Graph spectra and the detectability of community structure in networks

We study networks that display community structure--groups of nodes within which connections are unusually dense. Using methods from random matrix theory, we calculate the spectra of such networks in the limit of large size, and hence demonstrate the presence of a phase transition in matrix methods...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2012-05, Vol.108 (18), p.188701-188701, Article 188701
Hauptverfasser: Nadakuditi, Raj Rao, Newman, M E J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 188701
container_issue 18
container_start_page 188701
container_title Physical review letters
container_volume 108
creator Nadakuditi, Raj Rao
Newman, M E J
description We study networks that display community structure--groups of nodes within which connections are unusually dense. Using methods from random matrix theory, we calculate the spectra of such networks in the limit of large size, and hence demonstrate the presence of a phase transition in matrix methods for community detection, such as the popular modularity maximization method. The transition separates a regime in which such methods successfully detect the community structure from one in which the structure is present but is not detected. By comparing these results with recent analyses of maximum-likelihood methods, we are able to show that spectral modularity maximization is an optimal detection method in the sense that no other method will succeed in the regime where the modularity method fails.
doi_str_mv 10.1103/physrevlett.108.188701
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1020047495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1020047495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-fa0680d2889baebca515dd116f359d58802dd97377be7397959eb480ce4dc4313</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EoqXwF1COXFJ246S2j6jiJVUCIThHjr1RA3lhO6D-e1wVOI1mNLMrfYxdIiwRgV-P25139NVSCEsEuUQpBeARmyMIlQrE_JjNATimCkDM2Jn37wCA2UqeslkWBTHjc3Z37_S4TfxIJjid6N4mYUuJpRADXTVtE3bJUCdm6Lqp3xsf3GTC5Chp-qSn8D24D3_OTmrderr41QV7u7t9XT-km6f7x_XNJjV5VoS01rCSYDMpVaWpMrrAwlrEVc0LZQspIbNWCS5ERYIroQpFVS7BUG5NzpEv2NXh7uiGz4l8KLvGG2pb3dMw-RIhA8hFropYXR2qxg0-sqrL0TWddrtYKvcMy-fI8IW-NpFhzGR5YBiHl78_pqoj-z_7g8Z_APL5cP0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1020047495</pqid></control><display><type>article</type><title>Graph spectra and the detectability of community structure in networks</title><source>American Physical Society Journals</source><creator>Nadakuditi, Raj Rao ; Newman, M E J</creator><creatorcontrib>Nadakuditi, Raj Rao ; Newman, M E J</creatorcontrib><description>We study networks that display community structure--groups of nodes within which connections are unusually dense. Using methods from random matrix theory, we calculate the spectra of such networks in the limit of large size, and hence demonstrate the presence of a phase transition in matrix methods for community detection, such as the popular modularity maximization method. The transition separates a regime in which such methods successfully detect the community structure from one in which the structure is present but is not detected. By comparing these results with recent analyses of maximum-likelihood methods, we are able to show that spectral modularity maximization is an optimal detection method in the sense that no other method will succeed in the regime where the modularity method fails.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.108.188701</identifier><identifier>PMID: 22681123</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2012-05, Vol.108 (18), p.188701-188701, Article 188701</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-fa0680d2889baebca515dd116f359d58802dd97377be7397959eb480ce4dc4313</citedby><cites>FETCH-LOGICAL-c425t-fa0680d2889baebca515dd116f359d58802dd97377be7397959eb480ce4dc4313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22681123$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nadakuditi, Raj Rao</creatorcontrib><creatorcontrib>Newman, M E J</creatorcontrib><title>Graph spectra and the detectability of community structure in networks</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We study networks that display community structure--groups of nodes within which connections are unusually dense. Using methods from random matrix theory, we calculate the spectra of such networks in the limit of large size, and hence demonstrate the presence of a phase transition in matrix methods for community detection, such as the popular modularity maximization method. The transition separates a regime in which such methods successfully detect the community structure from one in which the structure is present but is not detected. By comparing these results with recent analyses of maximum-likelihood methods, we are able to show that spectral modularity maximization is an optimal detection method in the sense that no other method will succeed in the regime where the modularity method fails.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwzAQhC0EoqXwF1COXFJ246S2j6jiJVUCIThHjr1RA3lhO6D-e1wVOI1mNLMrfYxdIiwRgV-P25139NVSCEsEuUQpBeARmyMIlQrE_JjNATimCkDM2Jn37wCA2UqeslkWBTHjc3Z37_S4TfxIJjid6N4mYUuJpRADXTVtE3bJUCdm6Lqp3xsf3GTC5Chp-qSn8D24D3_OTmrderr41QV7u7t9XT-km6f7x_XNJjV5VoS01rCSYDMpVaWpMrrAwlrEVc0LZQspIbNWCS5ERYIroQpFVS7BUG5NzpEv2NXh7uiGz4l8KLvGG2pb3dMw-RIhA8hFropYXR2qxg0-sqrL0TWddrtYKvcMy-fI8IW-NpFhzGR5YBiHl78_pqoj-z_7g8Z_APL5cP0</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Nadakuditi, Raj Rao</creator><creator>Newman, M E J</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120501</creationdate><title>Graph spectra and the detectability of community structure in networks</title><author>Nadakuditi, Raj Rao ; Newman, M E J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-fa0680d2889baebca515dd116f359d58802dd97377be7397959eb480ce4dc4313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nadakuditi, Raj Rao</creatorcontrib><creatorcontrib>Newman, M E J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nadakuditi, Raj Rao</au><au>Newman, M E J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph spectra and the detectability of community structure in networks</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2012-05-01</date><risdate>2012</risdate><volume>108</volume><issue>18</issue><spage>188701</spage><epage>188701</epage><pages>188701-188701</pages><artnum>188701</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We study networks that display community structure--groups of nodes within which connections are unusually dense. Using methods from random matrix theory, we calculate the spectra of such networks in the limit of large size, and hence demonstrate the presence of a phase transition in matrix methods for community detection, such as the popular modularity maximization method. The transition separates a regime in which such methods successfully detect the community structure from one in which the structure is present but is not detected. By comparing these results with recent analyses of maximum-likelihood methods, we are able to show that spectral modularity maximization is an optimal detection method in the sense that no other method will succeed in the regime where the modularity method fails.</abstract><cop>United States</cop><pmid>22681123</pmid><doi>10.1103/physrevlett.108.188701</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2012-05, Vol.108 (18), p.188701-188701, Article 188701
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_1020047495
source American Physical Society Journals
title Graph spectra and the detectability of community structure in networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A22%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph%20spectra%20and%20the%20detectability%20of%20community%20structure%20in%20networks&rft.jtitle=Physical%20review%20letters&rft.au=Nadakuditi,%20Raj%20Rao&rft.date=2012-05-01&rft.volume=108&rft.issue=18&rft.spage=188701&rft.epage=188701&rft.pages=188701-188701&rft.artnum=188701&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.108.188701&rft_dat=%3Cproquest_cross%3E1020047495%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1020047495&rft_id=info:pmid/22681123&rfr_iscdi=true