Graph spectra and the detectability of community structure in networks
We study networks that display community structure--groups of nodes within which connections are unusually dense. Using methods from random matrix theory, we calculate the spectra of such networks in the limit of large size, and hence demonstrate the presence of a phase transition in matrix methods...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2012-05, Vol.108 (18), p.188701-188701, Article 188701 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 188701 |
---|---|
container_issue | 18 |
container_start_page | 188701 |
container_title | Physical review letters |
container_volume | 108 |
creator | Nadakuditi, Raj Rao Newman, M E J |
description | We study networks that display community structure--groups of nodes within which connections are unusually dense. Using methods from random matrix theory, we calculate the spectra of such networks in the limit of large size, and hence demonstrate the presence of a phase transition in matrix methods for community detection, such as the popular modularity maximization method. The transition separates a regime in which such methods successfully detect the community structure from one in which the structure is present but is not detected. By comparing these results with recent analyses of maximum-likelihood methods, we are able to show that spectral modularity maximization is an optimal detection method in the sense that no other method will succeed in the regime where the modularity method fails. |
doi_str_mv | 10.1103/physrevlett.108.188701 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1020047495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1020047495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-fa0680d2889baebca515dd116f359d58802dd97377be7397959eb480ce4dc4313</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EoqXwF1COXFJ246S2j6jiJVUCIThHjr1RA3lhO6D-e1wVOI1mNLMrfYxdIiwRgV-P25139NVSCEsEuUQpBeARmyMIlQrE_JjNATimCkDM2Jn37wCA2UqeslkWBTHjc3Z37_S4TfxIJjid6N4mYUuJpRADXTVtE3bJUCdm6Lqp3xsf3GTC5Chp-qSn8D24D3_OTmrderr41QV7u7t9XT-km6f7x_XNJjV5VoS01rCSYDMpVaWpMrrAwlrEVc0LZQspIbNWCS5ERYIroQpFVS7BUG5NzpEv2NXh7uiGz4l8KLvGG2pb3dMw-RIhA8hFropYXR2qxg0-sqrL0TWddrtYKvcMy-fI8IW-NpFhzGR5YBiHl78_pqoj-z_7g8Z_APL5cP0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1020047495</pqid></control><display><type>article</type><title>Graph spectra and the detectability of community structure in networks</title><source>American Physical Society Journals</source><creator>Nadakuditi, Raj Rao ; Newman, M E J</creator><creatorcontrib>Nadakuditi, Raj Rao ; Newman, M E J</creatorcontrib><description>We study networks that display community structure--groups of nodes within which connections are unusually dense. Using methods from random matrix theory, we calculate the spectra of such networks in the limit of large size, and hence demonstrate the presence of a phase transition in matrix methods for community detection, such as the popular modularity maximization method. The transition separates a regime in which such methods successfully detect the community structure from one in which the structure is present but is not detected. By comparing these results with recent analyses of maximum-likelihood methods, we are able to show that spectral modularity maximization is an optimal detection method in the sense that no other method will succeed in the regime where the modularity method fails.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.108.188701</identifier><identifier>PMID: 22681123</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2012-05, Vol.108 (18), p.188701-188701, Article 188701</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-fa0680d2889baebca515dd116f359d58802dd97377be7397959eb480ce4dc4313</citedby><cites>FETCH-LOGICAL-c425t-fa0680d2889baebca515dd116f359d58802dd97377be7397959eb480ce4dc4313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22681123$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nadakuditi, Raj Rao</creatorcontrib><creatorcontrib>Newman, M E J</creatorcontrib><title>Graph spectra and the detectability of community structure in networks</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We study networks that display community structure--groups of nodes within which connections are unusually dense. Using methods from random matrix theory, we calculate the spectra of such networks in the limit of large size, and hence demonstrate the presence of a phase transition in matrix methods for community detection, such as the popular modularity maximization method. The transition separates a regime in which such methods successfully detect the community structure from one in which the structure is present but is not detected. By comparing these results with recent analyses of maximum-likelihood methods, we are able to show that spectral modularity maximization is an optimal detection method in the sense that no other method will succeed in the regime where the modularity method fails.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwzAQhC0EoqXwF1COXFJ246S2j6jiJVUCIThHjr1RA3lhO6D-e1wVOI1mNLMrfYxdIiwRgV-P25139NVSCEsEuUQpBeARmyMIlQrE_JjNATimCkDM2Jn37wCA2UqeslkWBTHjc3Z37_S4TfxIJjid6N4mYUuJpRADXTVtE3bJUCdm6Lqp3xsf3GTC5Chp-qSn8D24D3_OTmrderr41QV7u7t9XT-km6f7x_XNJjV5VoS01rCSYDMpVaWpMrrAwlrEVc0LZQspIbNWCS5ERYIroQpFVS7BUG5NzpEv2NXh7uiGz4l8KLvGG2pb3dMw-RIhA8hFropYXR2qxg0-sqrL0TWddrtYKvcMy-fI8IW-NpFhzGR5YBiHl78_pqoj-z_7g8Z_APL5cP0</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Nadakuditi, Raj Rao</creator><creator>Newman, M E J</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120501</creationdate><title>Graph spectra and the detectability of community structure in networks</title><author>Nadakuditi, Raj Rao ; Newman, M E J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-fa0680d2889baebca515dd116f359d58802dd97377be7397959eb480ce4dc4313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nadakuditi, Raj Rao</creatorcontrib><creatorcontrib>Newman, M E J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nadakuditi, Raj Rao</au><au>Newman, M E J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph spectra and the detectability of community structure in networks</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2012-05-01</date><risdate>2012</risdate><volume>108</volume><issue>18</issue><spage>188701</spage><epage>188701</epage><pages>188701-188701</pages><artnum>188701</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We study networks that display community structure--groups of nodes within which connections are unusually dense. Using methods from random matrix theory, we calculate the spectra of such networks in the limit of large size, and hence demonstrate the presence of a phase transition in matrix methods for community detection, such as the popular modularity maximization method. The transition separates a regime in which such methods successfully detect the community structure from one in which the structure is present but is not detected. By comparing these results with recent analyses of maximum-likelihood methods, we are able to show that spectral modularity maximization is an optimal detection method in the sense that no other method will succeed in the regime where the modularity method fails.</abstract><cop>United States</cop><pmid>22681123</pmid><doi>10.1103/physrevlett.108.188701</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2012-05, Vol.108 (18), p.188701-188701, Article 188701 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_1020047495 |
source | American Physical Society Journals |
title | Graph spectra and the detectability of community structure in networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A22%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph%20spectra%20and%20the%20detectability%20of%20community%20structure%20in%20networks&rft.jtitle=Physical%20review%20letters&rft.au=Nadakuditi,%20Raj%20Rao&rft.date=2012-05-01&rft.volume=108&rft.issue=18&rft.spage=188701&rft.epage=188701&rft.pages=188701-188701&rft.artnum=188701&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.108.188701&rft_dat=%3Cproquest_cross%3E1020047495%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1020047495&rft_id=info:pmid/22681123&rfr_iscdi=true |