The signal model: A model for competing risks of opportunistic maintenance
►We present a reliability model for a system that releases signals as it degrades. ►The released signals are used to inform opportunistic maintenance. ►Maximum likelihood estimators for the parameters are derived from censored data. ►The system lifetime is determined without having to assume a depen...
Gespeichert in:
Veröffentlicht in: | European journal of operational research 2011-11, Vol.214 (3), p.665-673 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 673 |
---|---|
container_issue | 3 |
container_start_page | 665 |
container_title | European journal of operational research |
container_volume | 214 |
creator | Bedford, Tim Dewan, Isha Meilijson, Isaac Zitrou, Athena |
description | ►We present a reliability model for a system that releases signals as it degrades. ►The released signals are used to inform opportunistic maintenance. ►Maximum likelihood estimators for the parameters are derived from censored data. ►The system lifetime is determined without having to assume a dependence structure. ►The model can be used to support decisions in optimising preventive maintenance.
This paper presents a competing risks reliability model for a system that releases signals each time its condition deteriorates. The released signals are used to inform opportunistic maintenance. The model provides a framework for the determination of the underlying system lifetime from right-censored data, without requiring explicit assumptions about the type of censoring to be made. The parameters of the model are estimated from observational data by using maximum likelihood estimation. We illustrate the estimation process through a simulation study. The proposed signal model can be used to support decision-making in optimising preventive maintenance: at a component level, estimates of the underlying failure distribution can be used to identify the critical signal that would trigger maintenance of the individual component; at a multi-component system level, accurate estimates of the component underlying lifetimes are important when making general maintenance decisions. The benefit of good estimation from censored data, when adequate knowledge about the dependence structure is not available, may justify the additional data collection cost in cases where full signal data is not available. |
doi_str_mv | 10.1016/j.ejor.2011.05.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019695752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221711004413</els_id><sourcerecordid>1019695752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-feedb6d3eb15ca397ce78c773b8d9ba2d5515a339bf046282375c631aeba53543</originalsourceid><addsrcrecordid>eNp9kMtq3jAQhU1poH_TvEBXolDoxq4u1sWlmxDaJm0gm2QtZHmcyLUtV_IfyNt3jEMWXVQw0jB85zA6RfGe0YpRpj4PFQwxVZwyVlFZ4ehVcWBG81IZRV8XByq0Ljln-k3xNueBUsokk4fi5-0DkBzuZzeSKXYwfiHne0P6mIiP0wJrmO9JCvl3JrEncVliWo9zyGvwZHJhXmF2s4d3xUnvxgxnz-9pcff92-3FZXl98-Pq4vy69LVp1rIH6FrVCWiZ9E402oM2XmvRmq5pHe8kLuaEaNqe1oobLrT0SjAHrZNC1uK0-LT7Lin-OUJe7RSyh3F0M8RjthhIoxqpJUf0wz_oEI8J_5qt0aY2WkqJEN8hn2LOCXq7pDC59IROm5myg93StVu6lkqLIxT92kUJFvAvCsCDKGT7aIXjrMb7aes2qXABS2AtWEpJq7SwD-uEbh-f93TZu7FPmGfIL668FppywZD7unOA-T4GSDb7AJh9FxL41XYx_G_pv5W0qM8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>878487555</pqid></control><display><type>article</type><title>The signal model: A model for competing risks of opportunistic maintenance</title><source>RePEc</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Bedford, Tim ; Dewan, Isha ; Meilijson, Isaac ; Zitrou, Athena</creator><creatorcontrib>Bedford, Tim ; Dewan, Isha ; Meilijson, Isaac ; Zitrou, Athena</creatorcontrib><description>►We present a reliability model for a system that releases signals as it degrades. ►The released signals are used to inform opportunistic maintenance. ►Maximum likelihood estimators for the parameters are derived from censored data. ►The system lifetime is determined without having to assume a dependence structure. ►The model can be used to support decisions in optimising preventive maintenance.
This paper presents a competing risks reliability model for a system that releases signals each time its condition deteriorates. The released signals are used to inform opportunistic maintenance. The model provides a framework for the determination of the underlying system lifetime from right-censored data, without requiring explicit assumptions about the type of censoring to be made. The parameters of the model are estimated from observational data by using maximum likelihood estimation. We illustrate the estimation process through a simulation study. The proposed signal model can be used to support decision-making in optimising preventive maintenance: at a component level, estimates of the underlying failure distribution can be used to identify the critical signal that would trigger maintenance of the individual component; at a multi-component system level, accurate estimates of the component underlying lifetimes are important when making general maintenance decisions. The benefit of good estimation from censored data, when adequate knowledge about the dependence structure is not available, may justify the additional data collection cost in cases where full signal data is not available.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2011.05.016</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Collection ; Competing risks ; Decision making models ; Decision theory. Utility theory ; Deterioration ; Estimates ; Exact sciences and technology ; Maintenance ; Mathematics ; Maximum likelihood method ; Operational research ; Operational research and scientific management ; Operational research. Management science ; Optimization ; Optimization techniques ; Parametric inference ; Preventive maintenance ; Probability and statistics ; Reliability ; Reliability Maintenance Competing risks Statistical inference ; Reliability theory. Replacement problems ; Risk ; Risk theory. Actuarial science ; Sciences and techniques of general use ; Statistical inference ; Statistics ; Studies</subject><ispartof>European journal of operational research, 2011-11, Vol.214 (3), p.665-673</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Nov 1, 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-feedb6d3eb15ca397ce78c773b8d9ba2d5515a339bf046282375c631aeba53543</citedby><cites>FETCH-LOGICAL-c489t-feedb6d3eb15ca397ce78c773b8d9ba2d5515a339bf046282375c631aeba53543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejor.2011.05.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24370231$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a214_3ay_3a2011_3ai_3a3_3ap_3a665-673.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Bedford, Tim</creatorcontrib><creatorcontrib>Dewan, Isha</creatorcontrib><creatorcontrib>Meilijson, Isaac</creatorcontrib><creatorcontrib>Zitrou, Athena</creatorcontrib><title>The signal model: A model for competing risks of opportunistic maintenance</title><title>European journal of operational research</title><description>►We present a reliability model for a system that releases signals as it degrades. ►The released signals are used to inform opportunistic maintenance. ►Maximum likelihood estimators for the parameters are derived from censored data. ►The system lifetime is determined without having to assume a dependence structure. ►The model can be used to support decisions in optimising preventive maintenance.
This paper presents a competing risks reliability model for a system that releases signals each time its condition deteriorates. The released signals are used to inform opportunistic maintenance. The model provides a framework for the determination of the underlying system lifetime from right-censored data, without requiring explicit assumptions about the type of censoring to be made. The parameters of the model are estimated from observational data by using maximum likelihood estimation. We illustrate the estimation process through a simulation study. The proposed signal model can be used to support decision-making in optimising preventive maintenance: at a component level, estimates of the underlying failure distribution can be used to identify the critical signal that would trigger maintenance of the individual component; at a multi-component system level, accurate estimates of the component underlying lifetimes are important when making general maintenance decisions. The benefit of good estimation from censored data, when adequate knowledge about the dependence structure is not available, may justify the additional data collection cost in cases where full signal data is not available.</description><subject>Applied sciences</subject><subject>Collection</subject><subject>Competing risks</subject><subject>Decision making models</subject><subject>Decision theory. Utility theory</subject><subject>Deterioration</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Maintenance</subject><subject>Mathematics</subject><subject>Maximum likelihood method</subject><subject>Operational research</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Parametric inference</subject><subject>Preventive maintenance</subject><subject>Probability and statistics</subject><subject>Reliability</subject><subject>Reliability Maintenance Competing risks Statistical inference</subject><subject>Reliability theory. Replacement problems</subject><subject>Risk</subject><subject>Risk theory. Actuarial science</subject><subject>Sciences and techniques of general use</subject><subject>Statistical inference</subject><subject>Statistics</subject><subject>Studies</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9kMtq3jAQhU1poH_TvEBXolDoxq4u1sWlmxDaJm0gm2QtZHmcyLUtV_IfyNt3jEMWXVQw0jB85zA6RfGe0YpRpj4PFQwxVZwyVlFZ4ehVcWBG81IZRV8XByq0Ljln-k3xNueBUsokk4fi5-0DkBzuZzeSKXYwfiHne0P6mIiP0wJrmO9JCvl3JrEncVliWo9zyGvwZHJhXmF2s4d3xUnvxgxnz-9pcff92-3FZXl98-Pq4vy69LVp1rIH6FrVCWiZ9E402oM2XmvRmq5pHe8kLuaEaNqe1oobLrT0SjAHrZNC1uK0-LT7Lin-OUJe7RSyh3F0M8RjthhIoxqpJUf0wz_oEI8J_5qt0aY2WkqJEN8hn2LOCXq7pDC59IROm5myg93StVu6lkqLIxT92kUJFvAvCsCDKGT7aIXjrMb7aes2qXABS2AtWEpJq7SwD-uEbh-f93TZu7FPmGfIL668FppywZD7unOA-T4GSDb7AJh9FxL41XYx_G_pv5W0qM8</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Bedford, Tim</creator><creator>Dewan, Isha</creator><creator>Meilijson, Isaac</creator><creator>Zitrou, Athena</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TA</scope><scope>JG9</scope></search><sort><creationdate>20111101</creationdate><title>The signal model: A model for competing risks of opportunistic maintenance</title><author>Bedford, Tim ; Dewan, Isha ; Meilijson, Isaac ; Zitrou, Athena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-feedb6d3eb15ca397ce78c773b8d9ba2d5515a339bf046282375c631aeba53543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Collection</topic><topic>Competing risks</topic><topic>Decision making models</topic><topic>Decision theory. Utility theory</topic><topic>Deterioration</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Maintenance</topic><topic>Mathematics</topic><topic>Maximum likelihood method</topic><topic>Operational research</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Parametric inference</topic><topic>Preventive maintenance</topic><topic>Probability and statistics</topic><topic>Reliability</topic><topic>Reliability Maintenance Competing risks Statistical inference</topic><topic>Reliability theory. Replacement problems</topic><topic>Risk</topic><topic>Risk theory. Actuarial science</topic><topic>Sciences and techniques of general use</topic><topic>Statistical inference</topic><topic>Statistics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bedford, Tim</creatorcontrib><creatorcontrib>Dewan, Isha</creatorcontrib><creatorcontrib>Meilijson, Isaac</creatorcontrib><creatorcontrib>Zitrou, Athena</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Materials Business File</collection><collection>Materials Research Database</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bedford, Tim</au><au>Dewan, Isha</au><au>Meilijson, Isaac</au><au>Zitrou, Athena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The signal model: A model for competing risks of opportunistic maintenance</atitle><jtitle>European journal of operational research</jtitle><date>2011-11-01</date><risdate>2011</risdate><volume>214</volume><issue>3</issue><spage>665</spage><epage>673</epage><pages>665-673</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>►We present a reliability model for a system that releases signals as it degrades. ►The released signals are used to inform opportunistic maintenance. ►Maximum likelihood estimators for the parameters are derived from censored data. ►The system lifetime is determined without having to assume a dependence structure. ►The model can be used to support decisions in optimising preventive maintenance.
This paper presents a competing risks reliability model for a system that releases signals each time its condition deteriorates. The released signals are used to inform opportunistic maintenance. The model provides a framework for the determination of the underlying system lifetime from right-censored data, without requiring explicit assumptions about the type of censoring to be made. The parameters of the model are estimated from observational data by using maximum likelihood estimation. We illustrate the estimation process through a simulation study. The proposed signal model can be used to support decision-making in optimising preventive maintenance: at a component level, estimates of the underlying failure distribution can be used to identify the critical signal that would trigger maintenance of the individual component; at a multi-component system level, accurate estimates of the component underlying lifetimes are important when making general maintenance decisions. The benefit of good estimation from censored data, when adequate knowledge about the dependence structure is not available, may justify the additional data collection cost in cases where full signal data is not available.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2011.05.016</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-2217 |
ispartof | European journal of operational research, 2011-11, Vol.214 (3), p.665-673 |
issn | 0377-2217 1872-6860 |
language | eng |
recordid | cdi_proquest_miscellaneous_1019695752 |
source | RePEc; ScienceDirect Journals (5 years ago - present) |
subjects | Applied sciences Collection Competing risks Decision making models Decision theory. Utility theory Deterioration Estimates Exact sciences and technology Maintenance Mathematics Maximum likelihood method Operational research Operational research and scientific management Operational research. Management science Optimization Optimization techniques Parametric inference Preventive maintenance Probability and statistics Reliability Reliability Maintenance Competing risks Statistical inference Reliability theory. Replacement problems Risk Risk theory. Actuarial science Sciences and techniques of general use Statistical inference Statistics Studies |
title | The signal model: A model for competing risks of opportunistic maintenance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A22%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20signal%20model:%20A%20model%20for%20competing%20risks%20of%20opportunistic%20maintenance&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Bedford,%20Tim&rft.date=2011-11-01&rft.volume=214&rft.issue=3&rft.spage=665&rft.epage=673&rft.pages=665-673&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2011.05.016&rft_dat=%3Cproquest_cross%3E1019695752%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=878487555&rft_id=info:pmid/&rft_els_id=S0377221711004413&rfr_iscdi=true |