FRACTIONAL ORDER BOUNDARY VALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS INVOLVING PETTIS INTEGRAL

In this article, we investigate the existence of Pseudo solutions for some fractional order boundary value problem with integral boundary conditions in the Banach space of continuous function equipped with its weak topology. The class of such problems constitute a very interesting and important clas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica scientia 2011-03, Vol.31 (2), p.661-672
1. Verfasser: Salem, Hussein A.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 672
container_issue 2
container_start_page 661
container_title Acta mathematica scientia
container_volume 31
creator Salem, Hussein A.H.
description In this article, we investigate the existence of Pseudo solutions for some fractional order boundary value problem with integral boundary conditions in the Banach space of continuous function equipped with its weak topology. The class of such problems constitute a very interesting and important class of problems. They include two, three, multi-point and nonlocal boundary-value problems as special cases. In our investigation, the right hand side of the above problem is assumed to be Pettis integrable function. To encompass the full scope of this article, we give an example illustrating the main result.
doi_str_mv 10.1016/S0252-9602(11)60266-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019691667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>37196440</cqvip_id><els_id>S025296021160266X</els_id><sourcerecordid>1019691667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-82c4d563d7784a92571228f73e66a1ec0009c31fbb979c5b4e9ab314de053e3a3</originalsourceid><addsrcrecordid>eNqFkEFPwkAQhTdGExH9CSaNJzxUd7vtLnsypRRoUltSCuJp0263WAUKXTDx37uA4eppkpnvvZl5ANwj-IQgIs8TaDmWyQi0Ogg96kKIOb8ALeRQ3YZdeglaZ-Qa3Cj1CbXOInYLiEHiemkQR25oxEnfT4xePI36bvJuzNxw6hvjJO6F_qvxFqQjI4hSf5ho9Ax5cdQPDvqJHs7icBZEQ2Psp2kwOdO34KrMlkre_dU2mA781BuZYTwMPDc0BSZsZ3YtYRcOwQWlXTtjlkORZXVLiiUhGZICQsgERmWeM8qEk9uSZTlGdiGhgyXOcBt0Tr6bpt7updrxVaWEXC6ztaz3iuuwGGGIEKpR54SKplaqkSXfNNUqa340dOAIP4bKD4lxhPgxVD7XupeTTuo_vivZcCUquRayqBopdryoq38dHv42f9TrxbZaL3ieia-yWkqOqT7QtiH-BSuVgTY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019691667</pqid></control><display><type>article</type><title>FRACTIONAL ORDER BOUNDARY VALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS INVOLVING PETTIS INTEGRAL</title><source>Access via ScienceDirect (Elsevier)</source><source>Alma/SFX Local Collection</source><creator>Salem, Hussein A.H.</creator><creatorcontrib>Salem, Hussein A.H.</creatorcontrib><description>In this article, we investigate the existence of Pseudo solutions for some fractional order boundary value problem with integral boundary conditions in the Banach space of continuous function equipped with its weak topology. The class of such problems constitute a very interesting and important class of problems. They include two, three, multi-point and nonlocal boundary-value problems as special cases. In our investigation, the right hand side of the above problem is assumed to be Pettis integrable function. To encompass the full scope of this article, we give an example illustrating the main result.</description><identifier>ISSN: 0252-9602</identifier><identifier>EISSN: 1572-9087</identifier><identifier>DOI: 10.1016/S0252-9602(11)60266-X</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>26A33 ; 34G20 ; Banach space ; Banach空间 ; Boundary conditions ; boundary value problem ; Boundary value problems ; Fractional calculus ; Integrals ; Mathematical analysis ; Pettis integrals ; Pseudo solution ; Topology ; 分数阶积分 ; 弱拓扑 ; 积分值 ; 积分边界条件 ; 边值问题 ; 边界值问题 ; 连续函数</subject><ispartof>Acta mathematica scientia, 2011-03, Vol.31 (2), p.661-672</ispartof><rights>2011 Wuhan Institute of Physics and Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-82c4d563d7784a92571228f73e66a1ec0009c31fbb979c5b4e9ab314de053e3a3</citedby><cites>FETCH-LOGICAL-c369t-82c4d563d7784a92571228f73e66a1ec0009c31fbb979c5b4e9ab314de053e3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86464X/86464X.jpg</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0252-9602(11)60266-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Salem, Hussein A.H.</creatorcontrib><title>FRACTIONAL ORDER BOUNDARY VALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS INVOLVING PETTIS INTEGRAL</title><title>Acta mathematica scientia</title><addtitle>Acta Mathematica Scientia</addtitle><description>In this article, we investigate the existence of Pseudo solutions for some fractional order boundary value problem with integral boundary conditions in the Banach space of continuous function equipped with its weak topology. The class of such problems constitute a very interesting and important class of problems. They include two, three, multi-point and nonlocal boundary-value problems as special cases. In our investigation, the right hand side of the above problem is assumed to be Pettis integrable function. To encompass the full scope of this article, we give an example illustrating the main result.</description><subject>26A33</subject><subject>34G20</subject><subject>Banach space</subject><subject>Banach空间</subject><subject>Boundary conditions</subject><subject>boundary value problem</subject><subject>Boundary value problems</subject><subject>Fractional calculus</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Pettis integrals</subject><subject>Pseudo solution</subject><subject>Topology</subject><subject>分数阶积分</subject><subject>弱拓扑</subject><subject>积分值</subject><subject>积分边界条件</subject><subject>边值问题</subject><subject>边界值问题</subject><subject>连续函数</subject><issn>0252-9602</issn><issn>1572-9087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPwkAQhTdGExH9CSaNJzxUd7vtLnsypRRoUltSCuJp0263WAUKXTDx37uA4eppkpnvvZl5ANwj-IQgIs8TaDmWyQi0Ogg96kKIOb8ALeRQ3YZdeglaZ-Qa3Cj1CbXOInYLiEHiemkQR25oxEnfT4xePI36bvJuzNxw6hvjJO6F_qvxFqQjI4hSf5ho9Ax5cdQPDvqJHs7icBZEQ2Psp2kwOdO34KrMlkre_dU2mA781BuZYTwMPDc0BSZsZ3YtYRcOwQWlXTtjlkORZXVLiiUhGZICQsgERmWeM8qEk9uSZTlGdiGhgyXOcBt0Tr6bpt7updrxVaWEXC6ztaz3iuuwGGGIEKpR54SKplaqkSXfNNUqa340dOAIP4bKD4lxhPgxVD7XupeTTuo_vivZcCUquRayqBopdryoq38dHv42f9TrxbZaL3ieia-yWkqOqT7QtiH-BSuVgTY</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Salem, Hussein A.H.</creator><general>Elsevier Ltd</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110301</creationdate><title>FRACTIONAL ORDER BOUNDARY VALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS INVOLVING PETTIS INTEGRAL</title><author>Salem, Hussein A.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-82c4d563d7784a92571228f73e66a1ec0009c31fbb979c5b4e9ab314de053e3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>26A33</topic><topic>34G20</topic><topic>Banach space</topic><topic>Banach空间</topic><topic>Boundary conditions</topic><topic>boundary value problem</topic><topic>Boundary value problems</topic><topic>Fractional calculus</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Pettis integrals</topic><topic>Pseudo solution</topic><topic>Topology</topic><topic>分数阶积分</topic><topic>弱拓扑</topic><topic>积分值</topic><topic>积分边界条件</topic><topic>边值问题</topic><topic>边界值问题</topic><topic>连续函数</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salem, Hussein A.H.</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Acta mathematica scientia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salem, Hussein A.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FRACTIONAL ORDER BOUNDARY VALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS INVOLVING PETTIS INTEGRAL</atitle><jtitle>Acta mathematica scientia</jtitle><addtitle>Acta Mathematica Scientia</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>31</volume><issue>2</issue><spage>661</spage><epage>672</epage><pages>661-672</pages><issn>0252-9602</issn><eissn>1572-9087</eissn><abstract>In this article, we investigate the existence of Pseudo solutions for some fractional order boundary value problem with integral boundary conditions in the Banach space of continuous function equipped with its weak topology. The class of such problems constitute a very interesting and important class of problems. They include two, three, multi-point and nonlocal boundary-value problems as special cases. In our investigation, the right hand side of the above problem is assumed to be Pettis integrable function. To encompass the full scope of this article, we give an example illustrating the main result.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0252-9602(11)60266-X</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0252-9602
ispartof Acta mathematica scientia, 2011-03, Vol.31 (2), p.661-672
issn 0252-9602
1572-9087
language eng
recordid cdi_proquest_miscellaneous_1019691667
source Access via ScienceDirect (Elsevier); Alma/SFX Local Collection
subjects 26A33
34G20
Banach space
Banach空间
Boundary conditions
boundary value problem
Boundary value problems
Fractional calculus
Integrals
Mathematical analysis
Pettis integrals
Pseudo solution
Topology
分数阶积分
弱拓扑
积分值
积分边界条件
边值问题
边界值问题
连续函数
title FRACTIONAL ORDER BOUNDARY VALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS INVOLVING PETTIS INTEGRAL
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A33%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FRACTIONAL%20ORDER%20BOUNDARY%20VALUE%20PROBLEM%20WITH%20INTEGRAL%20BOUNDARY%20CONDITIONS%20INVOLVING%20PETTIS%20INTEGRAL&rft.jtitle=Acta%20mathematica%20scientia&rft.au=Salem,%20Hussein%20A.H.&rft.date=2011-03-01&rft.volume=31&rft.issue=2&rft.spage=661&rft.epage=672&rft.pages=661-672&rft.issn=0252-9602&rft.eissn=1572-9087&rft_id=info:doi/10.1016/S0252-9602(11)60266-X&rft_dat=%3Cproquest_cross%3E1019691667%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019691667&rft_id=info:pmid/&rft_cqvip_id=37196440&rft_els_id=S025296021160266X&rfr_iscdi=true