FRACTIONAL ORDER BOUNDARY VALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS INVOLVING PETTIS INTEGRAL
In this article, we investigate the existence of Pseudo solutions for some fractional order boundary value problem with integral boundary conditions in the Banach space of continuous function equipped with its weak topology. The class of such problems constitute a very interesting and important clas...
Gespeichert in:
Veröffentlicht in: | Acta mathematica scientia 2011-03, Vol.31 (2), p.661-672 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 672 |
---|---|
container_issue | 2 |
container_start_page | 661 |
container_title | Acta mathematica scientia |
container_volume | 31 |
creator | Salem, Hussein A.H. |
description | In this article, we investigate the existence of Pseudo solutions for some fractional order boundary value problem with integral boundary conditions in the Banach space of continuous function equipped with its weak topology. The class of such problems constitute a very interesting and important class of problems. They include two, three, multi-point and nonlocal boundary-value problems as special cases. In our investigation, the right hand side of the above problem is assumed to be Pettis integrable function. To encompass the full scope of this article, we give an example illustrating the main result. |
doi_str_mv | 10.1016/S0252-9602(11)60266-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019691667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>37196440</cqvip_id><els_id>S025296021160266X</els_id><sourcerecordid>1019691667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-82c4d563d7784a92571228f73e66a1ec0009c31fbb979c5b4e9ab314de053e3a3</originalsourceid><addsrcrecordid>eNqFkEFPwkAQhTdGExH9CSaNJzxUd7vtLnsypRRoUltSCuJp0263WAUKXTDx37uA4eppkpnvvZl5ANwj-IQgIs8TaDmWyQi0Ogg96kKIOb8ALeRQ3YZdeglaZ-Qa3Cj1CbXOInYLiEHiemkQR25oxEnfT4xePI36bvJuzNxw6hvjJO6F_qvxFqQjI4hSf5ho9Ax5cdQPDvqJHs7icBZEQ2Psp2kwOdO34KrMlkre_dU2mA781BuZYTwMPDc0BSZsZ3YtYRcOwQWlXTtjlkORZXVLiiUhGZICQsgERmWeM8qEk9uSZTlGdiGhgyXOcBt0Tr6bpt7updrxVaWEXC6ztaz3iuuwGGGIEKpR54SKplaqkSXfNNUqa340dOAIP4bKD4lxhPgxVD7XupeTTuo_vivZcCUquRayqBopdryoq38dHv42f9TrxbZaL3ieia-yWkqOqT7QtiH-BSuVgTY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019691667</pqid></control><display><type>article</type><title>FRACTIONAL ORDER BOUNDARY VALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS INVOLVING PETTIS INTEGRAL</title><source>Access via ScienceDirect (Elsevier)</source><source>Alma/SFX Local Collection</source><creator>Salem, Hussein A.H.</creator><creatorcontrib>Salem, Hussein A.H.</creatorcontrib><description>In this article, we investigate the existence of Pseudo solutions for some fractional order boundary value problem with integral boundary conditions in the Banach space of continuous function equipped with its weak topology. The class of such problems constitute a very interesting and important class of problems. They include two, three, multi-point and nonlocal boundary-value problems as special cases. In our investigation, the right hand side of the above problem is assumed to be Pettis integrable function. To encompass the full scope of this article, we give an example illustrating the main result.</description><identifier>ISSN: 0252-9602</identifier><identifier>EISSN: 1572-9087</identifier><identifier>DOI: 10.1016/S0252-9602(11)60266-X</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>26A33 ; 34G20 ; Banach space ; Banach空间 ; Boundary conditions ; boundary value problem ; Boundary value problems ; Fractional calculus ; Integrals ; Mathematical analysis ; Pettis integrals ; Pseudo solution ; Topology ; 分数阶积分 ; 弱拓扑 ; 积分值 ; 积分边界条件 ; 边值问题 ; 边界值问题 ; 连续函数</subject><ispartof>Acta mathematica scientia, 2011-03, Vol.31 (2), p.661-672</ispartof><rights>2011 Wuhan Institute of Physics and Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-82c4d563d7784a92571228f73e66a1ec0009c31fbb979c5b4e9ab314de053e3a3</citedby><cites>FETCH-LOGICAL-c369t-82c4d563d7784a92571228f73e66a1ec0009c31fbb979c5b4e9ab314de053e3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86464X/86464X.jpg</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0252-9602(11)60266-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Salem, Hussein A.H.</creatorcontrib><title>FRACTIONAL ORDER BOUNDARY VALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS INVOLVING PETTIS INTEGRAL</title><title>Acta mathematica scientia</title><addtitle>Acta Mathematica Scientia</addtitle><description>In this article, we investigate the existence of Pseudo solutions for some fractional order boundary value problem with integral boundary conditions in the Banach space of continuous function equipped with its weak topology. The class of such problems constitute a very interesting and important class of problems. They include two, three, multi-point and nonlocal boundary-value problems as special cases. In our investigation, the right hand side of the above problem is assumed to be Pettis integrable function. To encompass the full scope of this article, we give an example illustrating the main result.</description><subject>26A33</subject><subject>34G20</subject><subject>Banach space</subject><subject>Banach空间</subject><subject>Boundary conditions</subject><subject>boundary value problem</subject><subject>Boundary value problems</subject><subject>Fractional calculus</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Pettis integrals</subject><subject>Pseudo solution</subject><subject>Topology</subject><subject>分数阶积分</subject><subject>弱拓扑</subject><subject>积分值</subject><subject>积分边界条件</subject><subject>边值问题</subject><subject>边界值问题</subject><subject>连续函数</subject><issn>0252-9602</issn><issn>1572-9087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPwkAQhTdGExH9CSaNJzxUd7vtLnsypRRoUltSCuJp0263WAUKXTDx37uA4eppkpnvvZl5ANwj-IQgIs8TaDmWyQi0Ogg96kKIOb8ALeRQ3YZdeglaZ-Qa3Cj1CbXOInYLiEHiemkQR25oxEnfT4xePI36bvJuzNxw6hvjJO6F_qvxFqQjI4hSf5ho9Ax5cdQPDvqJHs7icBZEQ2Psp2kwOdO34KrMlkre_dU2mA781BuZYTwMPDc0BSZsZ3YtYRcOwQWlXTtjlkORZXVLiiUhGZICQsgERmWeM8qEk9uSZTlGdiGhgyXOcBt0Tr6bpt7updrxVaWEXC6ztaz3iuuwGGGIEKpR54SKplaqkSXfNNUqa340dOAIP4bKD4lxhPgxVD7XupeTTuo_vivZcCUquRayqBopdryoq38dHv42f9TrxbZaL3ieia-yWkqOqT7QtiH-BSuVgTY</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Salem, Hussein A.H.</creator><general>Elsevier Ltd</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110301</creationdate><title>FRACTIONAL ORDER BOUNDARY VALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS INVOLVING PETTIS INTEGRAL</title><author>Salem, Hussein A.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-82c4d563d7784a92571228f73e66a1ec0009c31fbb979c5b4e9ab314de053e3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>26A33</topic><topic>34G20</topic><topic>Banach space</topic><topic>Banach空间</topic><topic>Boundary conditions</topic><topic>boundary value problem</topic><topic>Boundary value problems</topic><topic>Fractional calculus</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Pettis integrals</topic><topic>Pseudo solution</topic><topic>Topology</topic><topic>分数阶积分</topic><topic>弱拓扑</topic><topic>积分值</topic><topic>积分边界条件</topic><topic>边值问题</topic><topic>边界值问题</topic><topic>连续函数</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salem, Hussein A.H.</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Acta mathematica scientia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salem, Hussein A.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FRACTIONAL ORDER BOUNDARY VALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS INVOLVING PETTIS INTEGRAL</atitle><jtitle>Acta mathematica scientia</jtitle><addtitle>Acta Mathematica Scientia</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>31</volume><issue>2</issue><spage>661</spage><epage>672</epage><pages>661-672</pages><issn>0252-9602</issn><eissn>1572-9087</eissn><abstract>In this article, we investigate the existence of Pseudo solutions for some fractional order boundary value problem with integral boundary conditions in the Banach space of continuous function equipped with its weak topology. The class of such problems constitute a very interesting and important class of problems. They include two, three, multi-point and nonlocal boundary-value problems as special cases. In our investigation, the right hand side of the above problem is assumed to be Pettis integrable function. To encompass the full scope of this article, we give an example illustrating the main result.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0252-9602(11)60266-X</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0252-9602 |
ispartof | Acta mathematica scientia, 2011-03, Vol.31 (2), p.661-672 |
issn | 0252-9602 1572-9087 |
language | eng |
recordid | cdi_proquest_miscellaneous_1019691667 |
source | Access via ScienceDirect (Elsevier); Alma/SFX Local Collection |
subjects | 26A33 34G20 Banach space Banach空间 Boundary conditions boundary value problem Boundary value problems Fractional calculus Integrals Mathematical analysis Pettis integrals Pseudo solution Topology 分数阶积分 弱拓扑 积分值 积分边界条件 边值问题 边界值问题 连续函数 |
title | FRACTIONAL ORDER BOUNDARY VALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS INVOLVING PETTIS INTEGRAL |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A33%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FRACTIONAL%20ORDER%20BOUNDARY%20VALUE%20PROBLEM%20WITH%20INTEGRAL%20BOUNDARY%20CONDITIONS%20INVOLVING%20PETTIS%20INTEGRAL&rft.jtitle=Acta%20mathematica%20scientia&rft.au=Salem,%20Hussein%20A.H.&rft.date=2011-03-01&rft.volume=31&rft.issue=2&rft.spage=661&rft.epage=672&rft.pages=661-672&rft.issn=0252-9602&rft.eissn=1572-9087&rft_id=info:doi/10.1016/S0252-9602(11)60266-X&rft_dat=%3Cproquest_cross%3E1019691667%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019691667&rft_id=info:pmid/&rft_cqvip_id=37196440&rft_els_id=S025296021160266X&rfr_iscdi=true |