Interactive Multiple Criteria Decision Making based on preference driven Evolutionary Multiobjective Optimization with controllable accuracy
► Human preferences drive evolutionary computations for interactive MCDM processes. ► Decision making processes are based on lower and upper bounds on outcomes. ► Evolutionary computations explore regions of feasible and infeasible variants. ► Two evolutionary algorithms are proposed and a numerical...
Gespeichert in:
Veröffentlicht in: | European journal of operational research 2012, Vol.216 (1), p.188-199 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 199 |
---|---|
container_issue | 1 |
container_start_page | 188 |
container_title | European journal of operational research |
container_volume | 216 |
creator | Kaliszewski, Ignacy Miroforidis, Janusz Podkopaev, Dmitry |
description | ► Human preferences drive evolutionary computations for interactive MCDM processes. ► Decision making processes are based on lower and upper bounds on outcomes. ► Evolutionary computations explore regions of feasible and infeasible variants. ► Two evolutionary algorithms are proposed and a numerical example is solved.
We present an approach to interactive Multiple Criteria Decision Making based on preference driven Evolutionary Multiobjective Optimization with controllable accuracy.
The approach relies on formulae for lower and upper bounds on coordinates of the outcome of an arbitrary efficient variant corresponding to preference information expressed by the Decision Maker. In contrast to earlier works on that subject, here lower and upper bounds can be calculated and their accuracy controlled entirely within evolutionary computation framework. This is made possible by exploration of not only the region of feasible variants – a standard within evolutionary optimization, but also the region of infeasible variants, the latter to our best knowledge being a novel approach within Evolutionary Multiobjective Optimization.
To illustrate how this concept can be applied to interactive Multiple Criteria Decision Making, two algorithms employing evolutionary computations are proposed and their usefulness demonstrated by a numerical example. |
doi_str_mv | 10.1016/j.ejor.2011.07.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019690663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221711006151</els_id><sourcerecordid>2468406321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-16972e9e72960d203f4cedd9b21667b65b1402263aa51b8b03031f80b67673ed3</originalsourceid><addsrcrecordid>eNp9kUGL1TAQx4so-Fz9Ap6CIHhpnaRt0oIXebvqwi570XNI0qmm9jU1aZ-sn8EP7ZQuHjx4Ckl-85_hN1n2kkPBgcu3Q4FDiIUAzgtQBfDyUXbgjRK5bCQ8zg5QKpULwdXT7FlKAwDwmteH7Pf1tGA0bvFnZLfruPh5RHaMnl69YZfofPJhYrfmu5--MmsSdozuc8QeI04OWRepdmJX5zCuC7Em3u9JwQ64B9_Niz_5X2b7Zj_98o25MC0xjKOx1M44t9IM98-zJ70ZE754OC-yLx-uPh8_5Td3H6-P729yVwm-5Fy2SmCLSrQSOgFlXznsutYKLqWysra8AiFkaUzNbWOhhJL3DVippCqxKy-yN3vuHMOPFdOiTz45pGkmDGvSpLSVLUhZEvrqH3QIa5xoOt20FdRCQU2Q2CEXQ0pkRs_Rn8gDJW1hUg9624_e9qNBadoPFb1-SDbJmbGPZiLXfytFVVe1aBRx73YOycjZY9TJ-U185yPp1V3w_2vzBxykqE8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>894052705</pqid></control><display><type>article</type><title>Interactive Multiple Criteria Decision Making based on preference driven Evolutionary Multiobjective Optimization with controllable accuracy</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kaliszewski, Ignacy ; Miroforidis, Janusz ; Podkopaev, Dmitry</creator><creatorcontrib>Kaliszewski, Ignacy ; Miroforidis, Janusz ; Podkopaev, Dmitry</creatorcontrib><description>► Human preferences drive evolutionary computations for interactive MCDM processes. ► Decision making processes are based on lower and upper bounds on outcomes. ► Evolutionary computations explore regions of feasible and infeasible variants. ► Two evolutionary algorithms are proposed and a numerical example is solved.
We present an approach to interactive Multiple Criteria Decision Making based on preference driven Evolutionary Multiobjective Optimization with controllable accuracy.
The approach relies on formulae for lower and upper bounds on coordinates of the outcome of an arbitrary efficient variant corresponding to preference information expressed by the Decision Maker. In contrast to earlier works on that subject, here lower and upper bounds can be calculated and their accuracy controlled entirely within evolutionary computation framework. This is made possible by exploration of not only the region of feasible variants – a standard within evolutionary optimization, but also the region of infeasible variants, the latter to our best knowledge being a novel approach within Evolutionary Multiobjective Optimization.
To illustrate how this concept can be applied to interactive Multiple Criteria Decision Making, two algorithms employing evolutionary computations are proposed and their usefulness demonstrated by a numerical example.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2011.07.013</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Accuracy ; Applied sciences ; Criteria ; Decision making ; Decision theory. Utility theory ; Evolutionary ; Evolutionary computations ; Exact sciences and technology ; Interactive ; Multiple criteria analysis ; Multiple criteria decision making ; Multiple objective programming ; Operational research and scientific management ; Operational research. Management science ; Optimization ; Optimization algorithms ; Preferences ; Stability ; Studies ; Upper bounds</subject><ispartof>European journal of operational research, 2012, Vol.216 (1), p.188-199</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Jan 1, 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-16972e9e72960d203f4cedd9b21667b65b1402263aa51b8b03031f80b67673ed3</citedby><cites>FETCH-LOGICAL-c421t-16972e9e72960d203f4cedd9b21667b65b1402263aa51b8b03031f80b67673ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejor.2011.07.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24545287$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaliszewski, Ignacy</creatorcontrib><creatorcontrib>Miroforidis, Janusz</creatorcontrib><creatorcontrib>Podkopaev, Dmitry</creatorcontrib><title>Interactive Multiple Criteria Decision Making based on preference driven Evolutionary Multiobjective Optimization with controllable accuracy</title><title>European journal of operational research</title><description>► Human preferences drive evolutionary computations for interactive MCDM processes. ► Decision making processes are based on lower and upper bounds on outcomes. ► Evolutionary computations explore regions of feasible and infeasible variants. ► Two evolutionary algorithms are proposed and a numerical example is solved.
We present an approach to interactive Multiple Criteria Decision Making based on preference driven Evolutionary Multiobjective Optimization with controllable accuracy.
The approach relies on formulae for lower and upper bounds on coordinates of the outcome of an arbitrary efficient variant corresponding to preference information expressed by the Decision Maker. In contrast to earlier works on that subject, here lower and upper bounds can be calculated and their accuracy controlled entirely within evolutionary computation framework. This is made possible by exploration of not only the region of feasible variants – a standard within evolutionary optimization, but also the region of infeasible variants, the latter to our best knowledge being a novel approach within Evolutionary Multiobjective Optimization.
To illustrate how this concept can be applied to interactive Multiple Criteria Decision Making, two algorithms employing evolutionary computations are proposed and their usefulness demonstrated by a numerical example.</description><subject>Accuracy</subject><subject>Applied sciences</subject><subject>Criteria</subject><subject>Decision making</subject><subject>Decision theory. Utility theory</subject><subject>Evolutionary</subject><subject>Evolutionary computations</subject><subject>Exact sciences and technology</subject><subject>Interactive</subject><subject>Multiple criteria analysis</subject><subject>Multiple criteria decision making</subject><subject>Multiple objective programming</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Preferences</subject><subject>Stability</subject><subject>Studies</subject><subject>Upper bounds</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kUGL1TAQx4so-Fz9Ap6CIHhpnaRt0oIXebvqwi570XNI0qmm9jU1aZ-sn8EP7ZQuHjx4Ckl-85_hN1n2kkPBgcu3Q4FDiIUAzgtQBfDyUXbgjRK5bCQ8zg5QKpULwdXT7FlKAwDwmteH7Pf1tGA0bvFnZLfruPh5RHaMnl69YZfofPJhYrfmu5--MmsSdozuc8QeI04OWRepdmJX5zCuC7Em3u9JwQ64B9_Niz_5X2b7Zj_98o25MC0xjKOx1M44t9IM98-zJ70ZE754OC-yLx-uPh8_5Td3H6-P729yVwm-5Fy2SmCLSrQSOgFlXznsutYKLqWysra8AiFkaUzNbWOhhJL3DVippCqxKy-yN3vuHMOPFdOiTz45pGkmDGvSpLSVLUhZEvrqH3QIa5xoOt20FdRCQU2Q2CEXQ0pkRs_Rn8gDJW1hUg9624_e9qNBadoPFb1-SDbJmbGPZiLXfytFVVe1aBRx73YOycjZY9TJ-U185yPp1V3w_2vzBxykqE8</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Kaliszewski, Ignacy</creator><creator>Miroforidis, Janusz</creator><creator>Podkopaev, Dmitry</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TA</scope><scope>JG9</scope></search><sort><creationdate>2012</creationdate><title>Interactive Multiple Criteria Decision Making based on preference driven Evolutionary Multiobjective Optimization with controllable accuracy</title><author>Kaliszewski, Ignacy ; Miroforidis, Janusz ; Podkopaev, Dmitry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-16972e9e72960d203f4cedd9b21667b65b1402263aa51b8b03031f80b67673ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Applied sciences</topic><topic>Criteria</topic><topic>Decision making</topic><topic>Decision theory. Utility theory</topic><topic>Evolutionary</topic><topic>Evolutionary computations</topic><topic>Exact sciences and technology</topic><topic>Interactive</topic><topic>Multiple criteria analysis</topic><topic>Multiple criteria decision making</topic><topic>Multiple objective programming</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Preferences</topic><topic>Stability</topic><topic>Studies</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaliszewski, Ignacy</creatorcontrib><creatorcontrib>Miroforidis, Janusz</creatorcontrib><creatorcontrib>Podkopaev, Dmitry</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Materials Business File</collection><collection>Materials Research Database</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaliszewski, Ignacy</au><au>Miroforidis, Janusz</au><au>Podkopaev, Dmitry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactive Multiple Criteria Decision Making based on preference driven Evolutionary Multiobjective Optimization with controllable accuracy</atitle><jtitle>European journal of operational research</jtitle><date>2012</date><risdate>2012</risdate><volume>216</volume><issue>1</issue><spage>188</spage><epage>199</epage><pages>188-199</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>► Human preferences drive evolutionary computations for interactive MCDM processes. ► Decision making processes are based on lower and upper bounds on outcomes. ► Evolutionary computations explore regions of feasible and infeasible variants. ► Two evolutionary algorithms are proposed and a numerical example is solved.
We present an approach to interactive Multiple Criteria Decision Making based on preference driven Evolutionary Multiobjective Optimization with controllable accuracy.
The approach relies on formulae for lower and upper bounds on coordinates of the outcome of an arbitrary efficient variant corresponding to preference information expressed by the Decision Maker. In contrast to earlier works on that subject, here lower and upper bounds can be calculated and their accuracy controlled entirely within evolutionary computation framework. This is made possible by exploration of not only the region of feasible variants – a standard within evolutionary optimization, but also the region of infeasible variants, the latter to our best knowledge being a novel approach within Evolutionary Multiobjective Optimization.
To illustrate how this concept can be applied to interactive Multiple Criteria Decision Making, two algorithms employing evolutionary computations are proposed and their usefulness demonstrated by a numerical example.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2011.07.013</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-2217 |
ispartof | European journal of operational research, 2012, Vol.216 (1), p.188-199 |
issn | 0377-2217 1872-6860 |
language | eng |
recordid | cdi_proquest_miscellaneous_1019690663 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Accuracy Applied sciences Criteria Decision making Decision theory. Utility theory Evolutionary Evolutionary computations Exact sciences and technology Interactive Multiple criteria analysis Multiple criteria decision making Multiple objective programming Operational research and scientific management Operational research. Management science Optimization Optimization algorithms Preferences Stability Studies Upper bounds |
title | Interactive Multiple Criteria Decision Making based on preference driven Evolutionary Multiobjective Optimization with controllable accuracy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A31%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactive%20Multiple%20Criteria%20Decision%20Making%20based%20on%20preference%20driven%20Evolutionary%20Multiobjective%20Optimization%20with%20controllable%20accuracy&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Kaliszewski,%20Ignacy&rft.date=2012&rft.volume=216&rft.issue=1&rft.spage=188&rft.epage=199&rft.pages=188-199&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2011.07.013&rft_dat=%3Cproquest_cross%3E2468406321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=894052705&rft_id=info:pmid/&rft_els_id=S0377221711006151&rfr_iscdi=true |