Thermoluminescence as a probe in bioactivity studies; the case of 58S sol–gel bioactive glass
The formation of a carbonated hydroxyapatite (HCAp) layer on the surface of bioactive materials is the main reaction that takes place upon their immersion in physiological fluids. To date, all techniques used for the identification of this HCAp formation are rather time consuming and not well suited...
Gespeichert in:
Veröffentlicht in: | Journal of physics. D, Applied physics Applied physics, 2011-10, Vol.44 (39), p.395501-1-8 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1-8 |
---|---|
container_issue | 39 |
container_start_page | 395501 |
container_title | Journal of physics. D, Applied physics |
container_volume | 44 |
creator | Polymeris, George S Goudouri, Ourania Menti Kontonasaki, Eleana Paraskevopoulos, Konstantinos M Tsirliganis, Nestor C Kitis, George |
description | The formation of a carbonated hydroxyapatite (HCAp) layer on the surface of bioactive materials is the main reaction that takes place upon their immersion in physiological fluids. To date, all techniques used for the identification of this HCAp formation are rather time consuming and not well suited to detailed and rapid monitoring of changes in the bioactivity response of the material. The aim of this work is to explore the possibility of using thermoluminescence (TL) for the discrimination between different bioactive responses in the case of the 58S bioactive glass. Results provided strong indications that the 110 °C TL peak of quartz can be used effectively in the study of the bioactive behaviour of 58S bioactive glass, since it is unambiguously present in all samples and does not require deconvolution analysis. Furthermore, the intensity of the 110 °C TL peak is proven to be very sensitive to the different bioactive responses, identifying the loss of silica which takes place at the first stages of the sequence. The discontinuities of the 110 °C TL peak intensity plot versus immersion time at 8 and 1440 min provide experimental indications regarding the timescale for both the beginning of amorphous CaP formation as well as the end of crystalline hydroxyl-apatite formation respectively, while the spike in the sensitization of the 110 °C TL peak, which was observed for immersion times ranging between 20 and 40 min, could be an experimental feature indicating the beginning of the crystalline HCAp formation. |
doi_str_mv | 10.1088/0022-3727/44/39/395501 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019663612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1019663612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-68c84cedad693b1590ff87581ff15524feca516fedfd52de1fce66cab701f5d3</originalsourceid><addsrcrecordid>eNqFkMtKAzEUQIMoWKu_INkIbsbmMclkcCXFFxRc2H1IMzdtZB517ozQnf_gH_olTmnpRkG4cBf33Nch5JKzG86MmTAmRCIzkU3SdCLzIZRi_IiMuNQ80amWx2R0gE7JGeIbY0xpw0fEzlfQVk3ZV7EG9FB7oA6po-u2WQCNNV3ExvkufsRuQ7Hriwh4S7sVUO8QaBOoMq8Um_L782sJ5QEHuiwd4jk5Ca5EuNjnMZk_3M-nT8ns5fF5ejdLvMxNl2jjTeqhcIXO5YKrnIVgMmV4CFwpkQbwTnEdoAiFEgXw4EFr7xYZ40EVckyud2OHs997wM5WcfimLF0NTY-WM55rPfgQA6p3qG8bxBaCXbexcu1mgOxWqN26sltXNk2tzO1O6NB4td_h0LsytK72EQ_dIlWZkGK7INlxsVkfqn_PtOsiDDz_zf9zyw86iZPr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019663612</pqid></control><display><type>article</type><title>Thermoluminescence as a probe in bioactivity studies; the case of 58S sol–gel bioactive glass</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Polymeris, George S ; Goudouri, Ourania Menti ; Kontonasaki, Eleana ; Paraskevopoulos, Konstantinos M ; Tsirliganis, Nestor C ; Kitis, George</creator><creatorcontrib>Polymeris, George S ; Goudouri, Ourania Menti ; Kontonasaki, Eleana ; Paraskevopoulos, Konstantinos M ; Tsirliganis, Nestor C ; Kitis, George</creatorcontrib><description>The formation of a carbonated hydroxyapatite (HCAp) layer on the surface of bioactive materials is the main reaction that takes place upon their immersion in physiological fluids. To date, all techniques used for the identification of this HCAp formation are rather time consuming and not well suited to detailed and rapid monitoring of changes in the bioactivity response of the material. The aim of this work is to explore the possibility of using thermoluminescence (TL) for the discrimination between different bioactive responses in the case of the 58S bioactive glass. Results provided strong indications that the 110 °C TL peak of quartz can be used effectively in the study of the bioactive behaviour of 58S bioactive glass, since it is unambiguously present in all samples and does not require deconvolution analysis. Furthermore, the intensity of the 110 °C TL peak is proven to be very sensitive to the different bioactive responses, identifying the loss of silica which takes place at the first stages of the sequence. The discontinuities of the 110 °C TL peak intensity plot versus immersion time at 8 and 1440 min provide experimental indications regarding the timescale for both the beginning of amorphous CaP formation as well as the end of crystalline hydroxyl-apatite formation respectively, while the spike in the sensitization of the 110 °C TL peak, which was observed for immersion times ranging between 20 and 40 min, could be an experimental feature indicating the beginning of the crystalline HCAp formation.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/0022-3727/44/39/395501</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Biochemistry ; Biological and medical sciences ; Cross-disciplinary physics: materials science; rheology ; Crystal structure ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General aspects ; Glass ; Glasses (including metallic glasses) ; Hydroxyapatite ; Immersion ; Indication ; Instrumentation. Materials. Reagents. Research laboratory organization ; Materials science ; Physics ; Sol gel process ; Specific materials ; Thermoluminescence</subject><ispartof>Journal of physics. D, Applied physics, 2011-10, Vol.44 (39), p.395501-1-8</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-68c84cedad693b1590ff87581ff15524feca516fedfd52de1fce66cab701f5d3</citedby><cites>FETCH-LOGICAL-c398t-68c84cedad693b1590ff87581ff15524feca516fedfd52de1fce66cab701f5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0022-3727/44/39/395501/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,778,782,27907,27908,53813,53893</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24572322$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Polymeris, George S</creatorcontrib><creatorcontrib>Goudouri, Ourania Menti</creatorcontrib><creatorcontrib>Kontonasaki, Eleana</creatorcontrib><creatorcontrib>Paraskevopoulos, Konstantinos M</creatorcontrib><creatorcontrib>Tsirliganis, Nestor C</creatorcontrib><creatorcontrib>Kitis, George</creatorcontrib><title>Thermoluminescence as a probe in bioactivity studies; the case of 58S sol–gel bioactive glass</title><title>Journal of physics. D, Applied physics</title><description>The formation of a carbonated hydroxyapatite (HCAp) layer on the surface of bioactive materials is the main reaction that takes place upon their immersion in physiological fluids. To date, all techniques used for the identification of this HCAp formation are rather time consuming and not well suited to detailed and rapid monitoring of changes in the bioactivity response of the material. The aim of this work is to explore the possibility of using thermoluminescence (TL) for the discrimination between different bioactive responses in the case of the 58S bioactive glass. Results provided strong indications that the 110 °C TL peak of quartz can be used effectively in the study of the bioactive behaviour of 58S bioactive glass, since it is unambiguously present in all samples and does not require deconvolution analysis. Furthermore, the intensity of the 110 °C TL peak is proven to be very sensitive to the different bioactive responses, identifying the loss of silica which takes place at the first stages of the sequence. The discontinuities of the 110 °C TL peak intensity plot versus immersion time at 8 and 1440 min provide experimental indications regarding the timescale for both the beginning of amorphous CaP formation as well as the end of crystalline hydroxyl-apatite formation respectively, while the spike in the sensitization of the 110 °C TL peak, which was observed for immersion times ranging between 20 and 40 min, could be an experimental feature indicating the beginning of the crystalline HCAp formation.</description><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystal structure</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Glass</subject><subject>Glasses (including metallic glasses)</subject><subject>Hydroxyapatite</subject><subject>Immersion</subject><subject>Indication</subject><subject>Instrumentation. Materials. Reagents. Research laboratory organization</subject><subject>Materials science</subject><subject>Physics</subject><subject>Sol gel process</subject><subject>Specific materials</subject><subject>Thermoluminescence</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUQIMoWKu_INkIbsbmMclkcCXFFxRc2H1IMzdtZB517ozQnf_gH_olTmnpRkG4cBf33Nch5JKzG86MmTAmRCIzkU3SdCLzIZRi_IiMuNQ80amWx2R0gE7JGeIbY0xpw0fEzlfQVk3ZV7EG9FB7oA6po-u2WQCNNV3ExvkufsRuQ7Hriwh4S7sVUO8QaBOoMq8Um_L782sJ5QEHuiwd4jk5Ca5EuNjnMZk_3M-nT8ns5fF5ejdLvMxNl2jjTeqhcIXO5YKrnIVgMmV4CFwpkQbwTnEdoAiFEgXw4EFr7xYZ40EVckyud2OHs997wM5WcfimLF0NTY-WM55rPfgQA6p3qG8bxBaCXbexcu1mgOxWqN26sltXNk2tzO1O6NB4td_h0LsytK72EQ_dIlWZkGK7INlxsVkfqn_PtOsiDDz_zf9zyw86iZPr</recordid><startdate>20111005</startdate><enddate>20111005</enddate><creator>Polymeris, George S</creator><creator>Goudouri, Ourania Menti</creator><creator>Kontonasaki, Eleana</creator><creator>Paraskevopoulos, Konstantinos M</creator><creator>Tsirliganis, Nestor C</creator><creator>Kitis, George</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20111005</creationdate><title>Thermoluminescence as a probe in bioactivity studies; the case of 58S sol–gel bioactive glass</title><author>Polymeris, George S ; Goudouri, Ourania Menti ; Kontonasaki, Eleana ; Paraskevopoulos, Konstantinos M ; Tsirliganis, Nestor C ; Kitis, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-68c84cedad693b1590ff87581ff15524feca516fedfd52de1fce66cab701f5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystal structure</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Glass</topic><topic>Glasses (including metallic glasses)</topic><topic>Hydroxyapatite</topic><topic>Immersion</topic><topic>Indication</topic><topic>Instrumentation. Materials. Reagents. Research laboratory organization</topic><topic>Materials science</topic><topic>Physics</topic><topic>Sol gel process</topic><topic>Specific materials</topic><topic>Thermoluminescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polymeris, George S</creatorcontrib><creatorcontrib>Goudouri, Ourania Menti</creatorcontrib><creatorcontrib>Kontonasaki, Eleana</creatorcontrib><creatorcontrib>Paraskevopoulos, Konstantinos M</creatorcontrib><creatorcontrib>Tsirliganis, Nestor C</creatorcontrib><creatorcontrib>Kitis, George</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polymeris, George S</au><au>Goudouri, Ourania Menti</au><au>Kontonasaki, Eleana</au><au>Paraskevopoulos, Konstantinos M</au><au>Tsirliganis, Nestor C</au><au>Kitis, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoluminescence as a probe in bioactivity studies; the case of 58S sol–gel bioactive glass</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><date>2011-10-05</date><risdate>2011</risdate><volume>44</volume><issue>39</issue><spage>395501</spage><epage>1-8</epage><pages>395501-1-8</pages><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>The formation of a carbonated hydroxyapatite (HCAp) layer on the surface of bioactive materials is the main reaction that takes place upon their immersion in physiological fluids. To date, all techniques used for the identification of this HCAp formation are rather time consuming and not well suited to detailed and rapid monitoring of changes in the bioactivity response of the material. The aim of this work is to explore the possibility of using thermoluminescence (TL) for the discrimination between different bioactive responses in the case of the 58S bioactive glass. Results provided strong indications that the 110 °C TL peak of quartz can be used effectively in the study of the bioactive behaviour of 58S bioactive glass, since it is unambiguously present in all samples and does not require deconvolution analysis. Furthermore, the intensity of the 110 °C TL peak is proven to be very sensitive to the different bioactive responses, identifying the loss of silica which takes place at the first stages of the sequence. The discontinuities of the 110 °C TL peak intensity plot versus immersion time at 8 and 1440 min provide experimental indications regarding the timescale for both the beginning of amorphous CaP formation as well as the end of crystalline hydroxyl-apatite formation respectively, while the spike in the sensitization of the 110 °C TL peak, which was observed for immersion times ranging between 20 and 40 min, could be an experimental feature indicating the beginning of the crystalline HCAp formation.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0022-3727/44/39/395501</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3727 |
ispartof | Journal of physics. D, Applied physics, 2011-10, Vol.44 (39), p.395501-1-8 |
issn | 0022-3727 1361-6463 |
language | eng |
recordid | cdi_proquest_miscellaneous_1019663612 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Biochemistry Biological and medical sciences Cross-disciplinary physics: materials science rheology Crystal structure Exact sciences and technology Fundamental and applied biological sciences. Psychology General aspects Glass Glasses (including metallic glasses) Hydroxyapatite Immersion Indication Instrumentation. Materials. Reagents. Research laboratory organization Materials science Physics Sol gel process Specific materials Thermoluminescence |
title | Thermoluminescence as a probe in bioactivity studies; the case of 58S sol–gel bioactive glass |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A52%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoluminescence%20as%20a%20probe%20in%20bioactivity%20studies;%20the%20case%20of%2058S%20sol%E2%80%93gel%20bioactive%20glass&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Polymeris,%20George%20S&rft.date=2011-10-05&rft.volume=44&rft.issue=39&rft.spage=395501&rft.epage=1-8&rft.pages=395501-1-8&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/0022-3727/44/39/395501&rft_dat=%3Cproquest_cross%3E1019663612%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019663612&rft_id=info:pmid/&rfr_iscdi=true |