Electron-spin excitation coupling in an electron-doped copper oxide superconductor

High-temperature (high- T c ) superconductivity in the copper oxides arises from electron or hole doping of their antiferromagnetic (AF) insulating parent compounds. The evolution of the AF phase with doping and its spatial coexistence with superconductivity are governed by the nature of charge and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2011-09, Vol.7 (9), p.719-724
Hauptverfasser: Zhao, Jun, Niestemski, F. C., Kunwar, Shankar, Li, Shiliang, Steffens, P., Hiess, A., Kang, H. J., Wilson, Stephen D., Wang, Ziqiang, Dai, Pengcheng, Madhavan, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 724
container_issue 9
container_start_page 719
container_title Nature physics
container_volume 7
creator Zhao, Jun
Niestemski, F. C.
Kunwar, Shankar
Li, Shiliang
Steffens, P.
Hiess, A.
Kang, H. J.
Wilson, Stephen D.
Wang, Ziqiang
Dai, Pengcheng
Madhavan, V.
description High-temperature (high- T c ) superconductivity in the copper oxides arises from electron or hole doping of their antiferromagnetic (AF) insulating parent compounds. The evolution of the AF phase with doping and its spatial coexistence with superconductivity are governed by the nature of charge and spin correlations, which provides clues to the mechanism of high- T c superconductivity. Here we use neutron scattering and scanning tunnelling spectroscopy (STS) to study the evolution of the bosonic excitations in electron-doped superconductor Pr 0.88 LaCe 0.12 CuO 4− δ with different transition temperatures ( T c ) obtained through the oxygen annealing process. We find that spin excitations detected by neutron scattering have two distinct modes that evolve with T c in a remarkably similar fashion to the low-energy electron tunnelling modes detected by STS. These results demonstrate that antiferromagnetism and superconductivity compete locally and coexist spatially on nanometre length scales, and the dominant electron–boson coupling at low energies originates from the electron-spin excitations. The combination of bulk momentum-space and local real-space probes shows that superconductivity and antiferromagnetism in an electron-doped copper oxide superconductor coexist and compete on a nanometre scale, with electronic spin excitations that are probably involved in the superconducting pairing mechanism.
doi_str_mv 10.1038/nphys2006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019659925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2492861761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-f6990d98ddb7946277819be02fefab0361f3118451014c452dd380d83fea63993</originalsourceid><addsrcrecordid>eNpl0F1LwzAUBuAgCs7phf-geKVC9SRpm-RSxvyAgSB6Xbp8zI4uiUkL2783Up2gVznkPOflcBA6x3CDgfJb6993kQBUB2iCWVHmpOD4cF8zeoxOYlwDFKTCdIJe5p2WfXA2j761md7Ktm_61tlMusF3rV1l6btJnR-nnNcqdb3XIXPbVuksDqmWzqpB9i6coiPTdFGffb9T9HY_f5095ovnh6fZ3SKXVECfm0oIUIIrtWSiqAhjHIulBmK0aZZAK2woxrwoMeBCFiVRinJQnBrdVFQIOkWXY64P7mPQsa83bZS66xqr3RDrNCeqUghSJnrxh67dEGzarhYAmDEgkNDViGRwMQZtah_aTRN2Kan-Om69P26y16ONydiVDr-B__EnEap7ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>900177020</pqid></control><display><type>article</type><title>Electron-spin excitation coupling in an electron-doped copper oxide superconductor</title><source>Springer Online Journals Complete</source><source>Nature Journals Online</source><creator>Zhao, Jun ; Niestemski, F. C. ; Kunwar, Shankar ; Li, Shiliang ; Steffens, P. ; Hiess, A. ; Kang, H. J. ; Wilson, Stephen D. ; Wang, Ziqiang ; Dai, Pengcheng ; Madhavan, V.</creator><creatorcontrib>Zhao, Jun ; Niestemski, F. C. ; Kunwar, Shankar ; Li, Shiliang ; Steffens, P. ; Hiess, A. ; Kang, H. J. ; Wilson, Stephen D. ; Wang, Ziqiang ; Dai, Pengcheng ; Madhavan, V.</creatorcontrib><description>High-temperature (high- T c ) superconductivity in the copper oxides arises from electron or hole doping of their antiferromagnetic (AF) insulating parent compounds. The evolution of the AF phase with doping and its spatial coexistence with superconductivity are governed by the nature of charge and spin correlations, which provides clues to the mechanism of high- T c superconductivity. Here we use neutron scattering and scanning tunnelling spectroscopy (STS) to study the evolution of the bosonic excitations in electron-doped superconductor Pr 0.88 LaCe 0.12 CuO 4− δ with different transition temperatures ( T c ) obtained through the oxygen annealing process. We find that spin excitations detected by neutron scattering have two distinct modes that evolve with T c in a remarkably similar fashion to the low-energy electron tunnelling modes detected by STS. These results demonstrate that antiferromagnetism and superconductivity compete locally and coexist spatially on nanometre length scales, and the dominant electron–boson coupling at low energies originates from the electron-spin excitations. The combination of bulk momentum-space and local real-space probes shows that superconductivity and antiferromagnetism in an electron-doped copper oxide superconductor coexist and compete on a nanometre scale, with electronic spin excitations that are probably involved in the superconducting pairing mechanism.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys2006</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>ANNEALING PROCESSES ; Antiferromagnetism ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Copper ; COPPER OXIDE ; Copper oxides ; DOPING ; ELECTRICAL CONDUCTIVITY ; Electrons ; Evolution ; Excitation ; High temperature ; High temperature physics ; High temperature superconductors ; MAGNETIC PROPERTIES ; Mathematical and Computational Physics ; Molecular ; Neutron scattering ; Optical and Plasma Physics ; OXIDES ; Physics ; Physics and Astronomy ; SCATTERING ; Spectroscopy ; SUPERCONDUCTIVITY ; SUPERCONDUCTORS ; Theoretical ; Transition temperatures</subject><ispartof>Nature physics, 2011-09, Vol.7 (9), p.719-724</ispartof><rights>Springer Nature Limited 2011</rights><rights>Copyright Nature Publishing Group Sep 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-f6990d98ddb7946277819be02fefab0361f3118451014c452dd380d83fea63993</citedby><cites>FETCH-LOGICAL-c390t-f6990d98ddb7946277819be02fefab0361f3118451014c452dd380d83fea63993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys2006$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys2006$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhao, Jun</creatorcontrib><creatorcontrib>Niestemski, F. C.</creatorcontrib><creatorcontrib>Kunwar, Shankar</creatorcontrib><creatorcontrib>Li, Shiliang</creatorcontrib><creatorcontrib>Steffens, P.</creatorcontrib><creatorcontrib>Hiess, A.</creatorcontrib><creatorcontrib>Kang, H. J.</creatorcontrib><creatorcontrib>Wilson, Stephen D.</creatorcontrib><creatorcontrib>Wang, Ziqiang</creatorcontrib><creatorcontrib>Dai, Pengcheng</creatorcontrib><creatorcontrib>Madhavan, V.</creatorcontrib><title>Electron-spin excitation coupling in an electron-doped copper oxide superconductor</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>High-temperature (high- T c ) superconductivity in the copper oxides arises from electron or hole doping of their antiferromagnetic (AF) insulating parent compounds. The evolution of the AF phase with doping and its spatial coexistence with superconductivity are governed by the nature of charge and spin correlations, which provides clues to the mechanism of high- T c superconductivity. Here we use neutron scattering and scanning tunnelling spectroscopy (STS) to study the evolution of the bosonic excitations in electron-doped superconductor Pr 0.88 LaCe 0.12 CuO 4− δ with different transition temperatures ( T c ) obtained through the oxygen annealing process. We find that spin excitations detected by neutron scattering have two distinct modes that evolve with T c in a remarkably similar fashion to the low-energy electron tunnelling modes detected by STS. These results demonstrate that antiferromagnetism and superconductivity compete locally and coexist spatially on nanometre length scales, and the dominant electron–boson coupling at low energies originates from the electron-spin excitations. The combination of bulk momentum-space and local real-space probes shows that superconductivity and antiferromagnetism in an electron-doped copper oxide superconductor coexist and compete on a nanometre scale, with electronic spin excitations that are probably involved in the superconducting pairing mechanism.</description><subject>ANNEALING PROCESSES</subject><subject>Antiferromagnetism</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Copper</subject><subject>COPPER OXIDE</subject><subject>Copper oxides</subject><subject>DOPING</subject><subject>ELECTRICAL CONDUCTIVITY</subject><subject>Electrons</subject><subject>Evolution</subject><subject>Excitation</subject><subject>High temperature</subject><subject>High temperature physics</subject><subject>High temperature superconductors</subject><subject>MAGNETIC PROPERTIES</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Neutron scattering</subject><subject>Optical and Plasma Physics</subject><subject>OXIDES</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>SCATTERING</subject><subject>Spectroscopy</subject><subject>SUPERCONDUCTIVITY</subject><subject>SUPERCONDUCTORS</subject><subject>Theoretical</subject><subject>Transition temperatures</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpl0F1LwzAUBuAgCs7phf-geKVC9SRpm-RSxvyAgSB6Xbp8zI4uiUkL2783Up2gVznkPOflcBA6x3CDgfJb6993kQBUB2iCWVHmpOD4cF8zeoxOYlwDFKTCdIJe5p2WfXA2j761md7Ktm_61tlMusF3rV1l6btJnR-nnNcqdb3XIXPbVuksDqmWzqpB9i6coiPTdFGffb9T9HY_f5095ovnh6fZ3SKXVECfm0oIUIIrtWSiqAhjHIulBmK0aZZAK2woxrwoMeBCFiVRinJQnBrdVFQIOkWXY64P7mPQsa83bZS66xqr3RDrNCeqUghSJnrxh67dEGzarhYAmDEgkNDViGRwMQZtah_aTRN2Kan-Om69P26y16ONydiVDr-B__EnEap7ug</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Zhao, Jun</creator><creator>Niestemski, F. C.</creator><creator>Kunwar, Shankar</creator><creator>Li, Shiliang</creator><creator>Steffens, P.</creator><creator>Hiess, A.</creator><creator>Kang, H. J.</creator><creator>Wilson, Stephen D.</creator><creator>Wang, Ziqiang</creator><creator>Dai, Pengcheng</creator><creator>Madhavan, V.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>20110901</creationdate><title>Electron-spin excitation coupling in an electron-doped copper oxide superconductor</title><author>Zhao, Jun ; Niestemski, F. C. ; Kunwar, Shankar ; Li, Shiliang ; Steffens, P. ; Hiess, A. ; Kang, H. J. ; Wilson, Stephen D. ; Wang, Ziqiang ; Dai, Pengcheng ; Madhavan, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-f6990d98ddb7946277819be02fefab0361f3118451014c452dd380d83fea63993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ANNEALING PROCESSES</topic><topic>Antiferromagnetism</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Copper</topic><topic>COPPER OXIDE</topic><topic>Copper oxides</topic><topic>DOPING</topic><topic>ELECTRICAL CONDUCTIVITY</topic><topic>Electrons</topic><topic>Evolution</topic><topic>Excitation</topic><topic>High temperature</topic><topic>High temperature physics</topic><topic>High temperature superconductors</topic><topic>MAGNETIC PROPERTIES</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Neutron scattering</topic><topic>Optical and Plasma Physics</topic><topic>OXIDES</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>SCATTERING</topic><topic>Spectroscopy</topic><topic>SUPERCONDUCTIVITY</topic><topic>SUPERCONDUCTORS</topic><topic>Theoretical</topic><topic>Transition temperatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Jun</creatorcontrib><creatorcontrib>Niestemski, F. C.</creatorcontrib><creatorcontrib>Kunwar, Shankar</creatorcontrib><creatorcontrib>Li, Shiliang</creatorcontrib><creatorcontrib>Steffens, P.</creatorcontrib><creatorcontrib>Hiess, A.</creatorcontrib><creatorcontrib>Kang, H. J.</creatorcontrib><creatorcontrib>Wilson, Stephen D.</creatorcontrib><creatorcontrib>Wang, Ziqiang</creatorcontrib><creatorcontrib>Dai, Pengcheng</creatorcontrib><creatorcontrib>Madhavan, V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Jun</au><au>Niestemski, F. C.</au><au>Kunwar, Shankar</au><au>Li, Shiliang</au><au>Steffens, P.</au><au>Hiess, A.</au><au>Kang, H. J.</au><au>Wilson, Stephen D.</au><au>Wang, Ziqiang</au><au>Dai, Pengcheng</au><au>Madhavan, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron-spin excitation coupling in an electron-doped copper oxide superconductor</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2011-09-01</date><risdate>2011</risdate><volume>7</volume><issue>9</issue><spage>719</spage><epage>724</epage><pages>719-724</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>High-temperature (high- T c ) superconductivity in the copper oxides arises from electron or hole doping of their antiferromagnetic (AF) insulating parent compounds. The evolution of the AF phase with doping and its spatial coexistence with superconductivity are governed by the nature of charge and spin correlations, which provides clues to the mechanism of high- T c superconductivity. Here we use neutron scattering and scanning tunnelling spectroscopy (STS) to study the evolution of the bosonic excitations in electron-doped superconductor Pr 0.88 LaCe 0.12 CuO 4− δ with different transition temperatures ( T c ) obtained through the oxygen annealing process. We find that spin excitations detected by neutron scattering have two distinct modes that evolve with T c in a remarkably similar fashion to the low-energy electron tunnelling modes detected by STS. These results demonstrate that antiferromagnetism and superconductivity compete locally and coexist spatially on nanometre length scales, and the dominant electron–boson coupling at low energies originates from the electron-spin excitations. The combination of bulk momentum-space and local real-space probes shows that superconductivity and antiferromagnetism in an electron-doped copper oxide superconductor coexist and compete on a nanometre scale, with electronic spin excitations that are probably involved in the superconducting pairing mechanism.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys2006</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2011-09, Vol.7 (9), p.719-724
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_miscellaneous_1019659925
source Springer Online Journals Complete; Nature Journals Online
subjects ANNEALING PROCESSES
Antiferromagnetism
Atomic
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Copper
COPPER OXIDE
Copper oxides
DOPING
ELECTRICAL CONDUCTIVITY
Electrons
Evolution
Excitation
High temperature
High temperature physics
High temperature superconductors
MAGNETIC PROPERTIES
Mathematical and Computational Physics
Molecular
Neutron scattering
Optical and Plasma Physics
OXIDES
Physics
Physics and Astronomy
SCATTERING
Spectroscopy
SUPERCONDUCTIVITY
SUPERCONDUCTORS
Theoretical
Transition temperatures
title Electron-spin excitation coupling in an electron-doped copper oxide superconductor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A44%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron-spin%20excitation%20coupling%20in%20an%20electron-doped%20copper%20oxide%20superconductor&rft.jtitle=Nature%20physics&rft.au=Zhao,%20Jun&rft.date=2011-09-01&rft.volume=7&rft.issue=9&rft.spage=719&rft.epage=724&rft.pages=719-724&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys2006&rft_dat=%3Cproquest_cross%3E2492861761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=900177020&rft_id=info:pmid/&rfr_iscdi=true