Electron-spin excitation coupling in an electron-doped copper oxide superconductor
High-temperature (high- T c ) superconductivity in the copper oxides arises from electron or hole doping of their antiferromagnetic (AF) insulating parent compounds. The evolution of the AF phase with doping and its spatial coexistence with superconductivity are governed by the nature of charge and...
Gespeichert in:
Veröffentlicht in: | Nature physics 2011-09, Vol.7 (9), p.719-724 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 724 |
---|---|
container_issue | 9 |
container_start_page | 719 |
container_title | Nature physics |
container_volume | 7 |
creator | Zhao, Jun Niestemski, F. C. Kunwar, Shankar Li, Shiliang Steffens, P. Hiess, A. Kang, H. J. Wilson, Stephen D. Wang, Ziqiang Dai, Pengcheng Madhavan, V. |
description | High-temperature (high-
T
c
) superconductivity in the copper oxides arises from electron or hole doping of their antiferromagnetic (AF) insulating parent compounds. The evolution of the AF phase with doping and its spatial coexistence with superconductivity are governed by the nature of charge and spin correlations, which provides clues to the mechanism of high-
T
c
superconductivity. Here we use neutron scattering and scanning tunnelling spectroscopy (STS) to study the evolution of the bosonic excitations in electron-doped superconductor Pr
0.88
LaCe
0.12
CuO
4−
δ
with different transition temperatures (
T
c
) obtained through the oxygen annealing process. We find that spin excitations detected by neutron scattering have two distinct modes that evolve with
T
c
in a remarkably similar fashion to the low-energy electron tunnelling modes detected by STS. These results demonstrate that antiferromagnetism and superconductivity compete locally and coexist spatially on nanometre length scales, and the dominant electron–boson coupling at low energies originates from the electron-spin excitations.
The combination of bulk momentum-space and local real-space probes shows that superconductivity and antiferromagnetism in an electron-doped copper oxide superconductor coexist and compete on a nanometre scale, with electronic spin excitations that are probably involved in the superconducting pairing mechanism. |
doi_str_mv | 10.1038/nphys2006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019659925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2492861761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-f6990d98ddb7946277819be02fefab0361f3118451014c452dd380d83fea63993</originalsourceid><addsrcrecordid>eNpl0F1LwzAUBuAgCs7phf-geKVC9SRpm-RSxvyAgSB6Xbp8zI4uiUkL2783Up2gVznkPOflcBA6x3CDgfJb6993kQBUB2iCWVHmpOD4cF8zeoxOYlwDFKTCdIJe5p2WfXA2j761md7Ktm_61tlMusF3rV1l6btJnR-nnNcqdb3XIXPbVuksDqmWzqpB9i6coiPTdFGffb9T9HY_f5095ovnh6fZ3SKXVECfm0oIUIIrtWSiqAhjHIulBmK0aZZAK2woxrwoMeBCFiVRinJQnBrdVFQIOkWXY64P7mPQsa83bZS66xqr3RDrNCeqUghSJnrxh67dEGzarhYAmDEgkNDViGRwMQZtah_aTRN2Kan-Om69P26y16ONydiVDr-B__EnEap7ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>900177020</pqid></control><display><type>article</type><title>Electron-spin excitation coupling in an electron-doped copper oxide superconductor</title><source>Springer Online Journals Complete</source><source>Nature Journals Online</source><creator>Zhao, Jun ; Niestemski, F. C. ; Kunwar, Shankar ; Li, Shiliang ; Steffens, P. ; Hiess, A. ; Kang, H. J. ; Wilson, Stephen D. ; Wang, Ziqiang ; Dai, Pengcheng ; Madhavan, V.</creator><creatorcontrib>Zhao, Jun ; Niestemski, F. C. ; Kunwar, Shankar ; Li, Shiliang ; Steffens, P. ; Hiess, A. ; Kang, H. J. ; Wilson, Stephen D. ; Wang, Ziqiang ; Dai, Pengcheng ; Madhavan, V.</creatorcontrib><description>High-temperature (high-
T
c
) superconductivity in the copper oxides arises from electron or hole doping of their antiferromagnetic (AF) insulating parent compounds. The evolution of the AF phase with doping and its spatial coexistence with superconductivity are governed by the nature of charge and spin correlations, which provides clues to the mechanism of high-
T
c
superconductivity. Here we use neutron scattering and scanning tunnelling spectroscopy (STS) to study the evolution of the bosonic excitations in electron-doped superconductor Pr
0.88
LaCe
0.12
CuO
4−
δ
with different transition temperatures (
T
c
) obtained through the oxygen annealing process. We find that spin excitations detected by neutron scattering have two distinct modes that evolve with
T
c
in a remarkably similar fashion to the low-energy electron tunnelling modes detected by STS. These results demonstrate that antiferromagnetism and superconductivity compete locally and coexist spatially on nanometre length scales, and the dominant electron–boson coupling at low energies originates from the electron-spin excitations.
The combination of bulk momentum-space and local real-space probes shows that superconductivity and antiferromagnetism in an electron-doped copper oxide superconductor coexist and compete on a nanometre scale, with electronic spin excitations that are probably involved in the superconducting pairing mechanism.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys2006</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>ANNEALING PROCESSES ; Antiferromagnetism ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Copper ; COPPER OXIDE ; Copper oxides ; DOPING ; ELECTRICAL CONDUCTIVITY ; Electrons ; Evolution ; Excitation ; High temperature ; High temperature physics ; High temperature superconductors ; MAGNETIC PROPERTIES ; Mathematical and Computational Physics ; Molecular ; Neutron scattering ; Optical and Plasma Physics ; OXIDES ; Physics ; Physics and Astronomy ; SCATTERING ; Spectroscopy ; SUPERCONDUCTIVITY ; SUPERCONDUCTORS ; Theoretical ; Transition temperatures</subject><ispartof>Nature physics, 2011-09, Vol.7 (9), p.719-724</ispartof><rights>Springer Nature Limited 2011</rights><rights>Copyright Nature Publishing Group Sep 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-f6990d98ddb7946277819be02fefab0361f3118451014c452dd380d83fea63993</citedby><cites>FETCH-LOGICAL-c390t-f6990d98ddb7946277819be02fefab0361f3118451014c452dd380d83fea63993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys2006$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys2006$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhao, Jun</creatorcontrib><creatorcontrib>Niestemski, F. C.</creatorcontrib><creatorcontrib>Kunwar, Shankar</creatorcontrib><creatorcontrib>Li, Shiliang</creatorcontrib><creatorcontrib>Steffens, P.</creatorcontrib><creatorcontrib>Hiess, A.</creatorcontrib><creatorcontrib>Kang, H. J.</creatorcontrib><creatorcontrib>Wilson, Stephen D.</creatorcontrib><creatorcontrib>Wang, Ziqiang</creatorcontrib><creatorcontrib>Dai, Pengcheng</creatorcontrib><creatorcontrib>Madhavan, V.</creatorcontrib><title>Electron-spin excitation coupling in an electron-doped copper oxide superconductor</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>High-temperature (high-
T
c
) superconductivity in the copper oxides arises from electron or hole doping of their antiferromagnetic (AF) insulating parent compounds. The evolution of the AF phase with doping and its spatial coexistence with superconductivity are governed by the nature of charge and spin correlations, which provides clues to the mechanism of high-
T
c
superconductivity. Here we use neutron scattering and scanning tunnelling spectroscopy (STS) to study the evolution of the bosonic excitations in electron-doped superconductor Pr
0.88
LaCe
0.12
CuO
4−
δ
with different transition temperatures (
T
c
) obtained through the oxygen annealing process. We find that spin excitations detected by neutron scattering have two distinct modes that evolve with
T
c
in a remarkably similar fashion to the low-energy electron tunnelling modes detected by STS. These results demonstrate that antiferromagnetism and superconductivity compete locally and coexist spatially on nanometre length scales, and the dominant electron–boson coupling at low energies originates from the electron-spin excitations.
The combination of bulk momentum-space and local real-space probes shows that superconductivity and antiferromagnetism in an electron-doped copper oxide superconductor coexist and compete on a nanometre scale, with electronic spin excitations that are probably involved in the superconducting pairing mechanism.</description><subject>ANNEALING PROCESSES</subject><subject>Antiferromagnetism</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Copper</subject><subject>COPPER OXIDE</subject><subject>Copper oxides</subject><subject>DOPING</subject><subject>ELECTRICAL CONDUCTIVITY</subject><subject>Electrons</subject><subject>Evolution</subject><subject>Excitation</subject><subject>High temperature</subject><subject>High temperature physics</subject><subject>High temperature superconductors</subject><subject>MAGNETIC PROPERTIES</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Neutron scattering</subject><subject>Optical and Plasma Physics</subject><subject>OXIDES</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>SCATTERING</subject><subject>Spectroscopy</subject><subject>SUPERCONDUCTIVITY</subject><subject>SUPERCONDUCTORS</subject><subject>Theoretical</subject><subject>Transition temperatures</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpl0F1LwzAUBuAgCs7phf-geKVC9SRpm-RSxvyAgSB6Xbp8zI4uiUkL2783Up2gVznkPOflcBA6x3CDgfJb6993kQBUB2iCWVHmpOD4cF8zeoxOYlwDFKTCdIJe5p2WfXA2j761md7Ktm_61tlMusF3rV1l6btJnR-nnNcqdb3XIXPbVuksDqmWzqpB9i6coiPTdFGffb9T9HY_f5095ovnh6fZ3SKXVECfm0oIUIIrtWSiqAhjHIulBmK0aZZAK2woxrwoMeBCFiVRinJQnBrdVFQIOkWXY64P7mPQsa83bZS66xqr3RDrNCeqUghSJnrxh67dEGzarhYAmDEgkNDViGRwMQZtah_aTRN2Kan-Om69P26y16ONydiVDr-B__EnEap7ug</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Zhao, Jun</creator><creator>Niestemski, F. C.</creator><creator>Kunwar, Shankar</creator><creator>Li, Shiliang</creator><creator>Steffens, P.</creator><creator>Hiess, A.</creator><creator>Kang, H. J.</creator><creator>Wilson, Stephen D.</creator><creator>Wang, Ziqiang</creator><creator>Dai, Pengcheng</creator><creator>Madhavan, V.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>20110901</creationdate><title>Electron-spin excitation coupling in an electron-doped copper oxide superconductor</title><author>Zhao, Jun ; Niestemski, F. C. ; Kunwar, Shankar ; Li, Shiliang ; Steffens, P. ; Hiess, A. ; Kang, H. J. ; Wilson, Stephen D. ; Wang, Ziqiang ; Dai, Pengcheng ; Madhavan, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-f6990d98ddb7946277819be02fefab0361f3118451014c452dd380d83fea63993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ANNEALING PROCESSES</topic><topic>Antiferromagnetism</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Copper</topic><topic>COPPER OXIDE</topic><topic>Copper oxides</topic><topic>DOPING</topic><topic>ELECTRICAL CONDUCTIVITY</topic><topic>Electrons</topic><topic>Evolution</topic><topic>Excitation</topic><topic>High temperature</topic><topic>High temperature physics</topic><topic>High temperature superconductors</topic><topic>MAGNETIC PROPERTIES</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Neutron scattering</topic><topic>Optical and Plasma Physics</topic><topic>OXIDES</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>SCATTERING</topic><topic>Spectroscopy</topic><topic>SUPERCONDUCTIVITY</topic><topic>SUPERCONDUCTORS</topic><topic>Theoretical</topic><topic>Transition temperatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Jun</creatorcontrib><creatorcontrib>Niestemski, F. C.</creatorcontrib><creatorcontrib>Kunwar, Shankar</creatorcontrib><creatorcontrib>Li, Shiliang</creatorcontrib><creatorcontrib>Steffens, P.</creatorcontrib><creatorcontrib>Hiess, A.</creatorcontrib><creatorcontrib>Kang, H. J.</creatorcontrib><creatorcontrib>Wilson, Stephen D.</creatorcontrib><creatorcontrib>Wang, Ziqiang</creatorcontrib><creatorcontrib>Dai, Pengcheng</creatorcontrib><creatorcontrib>Madhavan, V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Jun</au><au>Niestemski, F. C.</au><au>Kunwar, Shankar</au><au>Li, Shiliang</au><au>Steffens, P.</au><au>Hiess, A.</au><au>Kang, H. J.</au><au>Wilson, Stephen D.</au><au>Wang, Ziqiang</au><au>Dai, Pengcheng</au><au>Madhavan, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron-spin excitation coupling in an electron-doped copper oxide superconductor</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2011-09-01</date><risdate>2011</risdate><volume>7</volume><issue>9</issue><spage>719</spage><epage>724</epage><pages>719-724</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>High-temperature (high-
T
c
) superconductivity in the copper oxides arises from electron or hole doping of their antiferromagnetic (AF) insulating parent compounds. The evolution of the AF phase with doping and its spatial coexistence with superconductivity are governed by the nature of charge and spin correlations, which provides clues to the mechanism of high-
T
c
superconductivity. Here we use neutron scattering and scanning tunnelling spectroscopy (STS) to study the evolution of the bosonic excitations in electron-doped superconductor Pr
0.88
LaCe
0.12
CuO
4−
δ
with different transition temperatures (
T
c
) obtained through the oxygen annealing process. We find that spin excitations detected by neutron scattering have two distinct modes that evolve with
T
c
in a remarkably similar fashion to the low-energy electron tunnelling modes detected by STS. These results demonstrate that antiferromagnetism and superconductivity compete locally and coexist spatially on nanometre length scales, and the dominant electron–boson coupling at low energies originates from the electron-spin excitations.
The combination of bulk momentum-space and local real-space probes shows that superconductivity and antiferromagnetism in an electron-doped copper oxide superconductor coexist and compete on a nanometre scale, with electronic spin excitations that are probably involved in the superconducting pairing mechanism.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys2006</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2011-09, Vol.7 (9), p.719-724 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_miscellaneous_1019659925 |
source | Springer Online Journals Complete; Nature Journals Online |
subjects | ANNEALING PROCESSES Antiferromagnetism Atomic Classical and Continuum Physics Complex Systems Condensed Matter Physics Copper COPPER OXIDE Copper oxides DOPING ELECTRICAL CONDUCTIVITY Electrons Evolution Excitation High temperature High temperature physics High temperature superconductors MAGNETIC PROPERTIES Mathematical and Computational Physics Molecular Neutron scattering Optical and Plasma Physics OXIDES Physics Physics and Astronomy SCATTERING Spectroscopy SUPERCONDUCTIVITY SUPERCONDUCTORS Theoretical Transition temperatures |
title | Electron-spin excitation coupling in an electron-doped copper oxide superconductor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A44%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron-spin%20excitation%20coupling%20in%20an%20electron-doped%20copper%20oxide%20superconductor&rft.jtitle=Nature%20physics&rft.au=Zhao,%20Jun&rft.date=2011-09-01&rft.volume=7&rft.issue=9&rft.spage=719&rft.epage=724&rft.pages=719-724&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys2006&rft_dat=%3Cproquest_cross%3E2492861761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=900177020&rft_id=info:pmid/&rfr_iscdi=true |