Novel Semi-blind Channel Estimation Schemes for Rayleigh Flat Fading MIMO Channels

In this paper, we propose two novel semi-blind channel estimation techniques based on QR decomposition for Rayleigh flat fading Multiple Input Multiple output (MIMO) channel using various pilot symbols. In the first technique, the flat-fading MIMO channel matrix H can be decomposed as an upper trian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of communications, network and system sciences network and system sciences, 2011-09, Vol.4 (9), p.578-584
Hauptverfasser: Bhalani, Jaymin, Chauhan, Dharmendra, Kosta, Y. P., Trivedi, A. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose two novel semi-blind channel estimation techniques based on QR decomposition for Rayleigh flat fading Multiple Input Multiple output (MIMO) channel using various pilot symbols. In the first technique, the flat-fading MIMO channel matrix H can be decomposed as an upper triangular matrix R and a unitary rotation matrix Q as H = RQ. The matrix R is estimated blindly from only received data by using orthogonal matrix triangularization based house holder QR decomposition, while the optimum rotation matrix Q is estimated exclusively from pilot based Orthogonal Pilot Maximum Likelihood Estimator (OPML) algorithm. In the second technique, joint semi-blind channel and data estimation is performed using QR decomposition based Least Square (LS) algorithm. Simulations have taken under 4-PSK data modulation scheme for two transmitters and six receiver antennas using various training symbols. Finally, these two new techniques compare with Whitening Rotation (WR) based semi-blind channel estimation technique and results shows that those new techniques achieve very nearby performance with low complexity compare to Whitening rotation based technique. Also first technique with perfect R outperforms Whitening Rotation based technique.
ISSN:1913-3715
1913-3723
DOI:10.4236/ijcns.2011.49069