A constraint-reduced variant of Mehrotra’s predictor-corrector algorithm

Consider linear programs in dual standard form with n constraints and m variables. When typical interior-point algorithms are used for the solution of such problems, updating the iterates, using direct methods for solving the linear systems and assuming a dense constraint matrix A , requires operati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational optimization and applications 2012-04, Vol.51 (3), p.1001-1036
Hauptverfasser: Winternitz, Luke B., Nicholls, Stacey O., Tits, André L., O’Leary, Dianne P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1036
container_issue 3
container_start_page 1001
container_title Computational optimization and applications
container_volume 51
creator Winternitz, Luke B.
Nicholls, Stacey O.
Tits, André L.
O’Leary, Dianne P.
description Consider linear programs in dual standard form with n constraints and m variables. When typical interior-point algorithms are used for the solution of such problems, updating the iterates, using direct methods for solving the linear systems and assuming a dense constraint matrix A , requires operations per iteration. When n ≫ m it is often the case that at each iteration most of the constraints are not very relevant for the construction of a good update and could be ignored to achieve computational savings. This idea was considered in the 1990s by Dantzig and Ye, Tone, Kaliski and Ye, den Hertog et al. and others. More recently, Tits et al. proposed a simple “constraint-reduction” scheme and proved global and local quadratic convergence for a dual-feasible primal-dual affine-scaling method modified according to that scheme. In the present work, similar convergence results are proved for a dual-feasible constraint-reduced variant of Mehrotra’s predictor-corrector algorithm, under less restrictive nondegeneracy assumptions. These stronger results extend to primal-dual affine scaling as a limiting case. Promising numerical results are reported. As a special case, our analysis applies to standard (unreduced) primal-dual affine scaling. While we do not prove polynomial complexity, our algorithm allows for much larger steps than in previous convergence analyses of such algorithms.
doi_str_mv 10.1007/s10589-010-9389-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019652789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1019652789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-cb46b1349249716c2f5be7d59a8d6232754f607d4a7b90459edc57b21afa017e3</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOF4ewF1x5SZ6kubSLIfBKyNudB3SNJ3p0GnGpBXc-Rq-nk9iSgVBcHUOnO__OXwInRG4JADyKhLghcJAAKs8LWwPzQiXOaaFYvtoBooKLADyQ3QU4wYAlMzpDD3MM-u72AfTdD0Orhqsq7I3ExrT9Zmvs0e3Dj6dvz4-Y7ZLQGN7H7D1Ibhxy0y78qHp19sTdFCbNrrTn3mMXm6unxd3ePl0e7-YL7HNFemxLZkoSc4UZUoSYWnNSycrrkxRCZpTyVktQFbMyFIB48pVlsuSElMbINLlx-hi6t0F_zq42OttE61rW9M5P0RNgCjBqSxUQs__oBs_hC59pxXlSkAhWYLIBNngYwyu1rvQbE14T016lKsnuTrJ1aNcPWbolImJ7VYu_Bb_H_oGStR9GQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925960874</pqid></control><display><type>article</type><title>A constraint-reduced variant of Mehrotra’s predictor-corrector algorithm</title><source>Springer Nature - Complete Springer Journals</source><source>Business Source Complete</source><creator>Winternitz, Luke B. ; Nicholls, Stacey O. ; Tits, André L. ; O’Leary, Dianne P.</creator><creatorcontrib>Winternitz, Luke B. ; Nicholls, Stacey O. ; Tits, André L. ; O’Leary, Dianne P.</creatorcontrib><description>Consider linear programs in dual standard form with n constraints and m variables. When typical interior-point algorithms are used for the solution of such problems, updating the iterates, using direct methods for solving the linear systems and assuming a dense constraint matrix A , requires operations per iteration. When n ≫ m it is often the case that at each iteration most of the constraints are not very relevant for the construction of a good update and could be ignored to achieve computational savings. This idea was considered in the 1990s by Dantzig and Ye, Tone, Kaliski and Ye, den Hertog et al. and others. More recently, Tits et al. proposed a simple “constraint-reduction” scheme and proved global and local quadratic convergence for a dual-feasible primal-dual affine-scaling method modified according to that scheme. In the present work, similar convergence results are proved for a dual-feasible constraint-reduced variant of Mehrotra’s predictor-corrector algorithm, under less restrictive nondegeneracy assumptions. These stronger results extend to primal-dual affine scaling as a limiting case. Promising numerical results are reported. As a special case, our analysis applies to standard (unreduced) primal-dual affine scaling. While we do not prove polynomial complexity, our algorithm allows for much larger steps than in previous convergence analyses of such algorithms.</description><identifier>ISSN: 0926-6003</identifier><identifier>EISSN: 1573-2894</identifier><identifier>DOI: 10.1007/s10589-010-9389-4</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Computation ; Convergence ; Convex and Discrete Geometry ; Cost control ; Iterative methods ; Linear programming ; Management Science ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Methods ; Operations Research ; Operations Research/Decision Theory ; Optimization ; Predictor-corrector methods ; Statistics ; Studies</subject><ispartof>Computational optimization and applications, 2012-04, Vol.51 (3), p.1001-1036</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>Springer Science+Business Media, LLC 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-cb46b1349249716c2f5be7d59a8d6232754f607d4a7b90459edc57b21afa017e3</citedby><cites>FETCH-LOGICAL-c391t-cb46b1349249716c2f5be7d59a8d6232754f607d4a7b90459edc57b21afa017e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10589-010-9389-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10589-010-9389-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Winternitz, Luke B.</creatorcontrib><creatorcontrib>Nicholls, Stacey O.</creatorcontrib><creatorcontrib>Tits, André L.</creatorcontrib><creatorcontrib>O’Leary, Dianne P.</creatorcontrib><title>A constraint-reduced variant of Mehrotra’s predictor-corrector algorithm</title><title>Computational optimization and applications</title><addtitle>Comput Optim Appl</addtitle><description>Consider linear programs in dual standard form with n constraints and m variables. When typical interior-point algorithms are used for the solution of such problems, updating the iterates, using direct methods for solving the linear systems and assuming a dense constraint matrix A , requires operations per iteration. When n ≫ m it is often the case that at each iteration most of the constraints are not very relevant for the construction of a good update and could be ignored to achieve computational savings. This idea was considered in the 1990s by Dantzig and Ye, Tone, Kaliski and Ye, den Hertog et al. and others. More recently, Tits et al. proposed a simple “constraint-reduction” scheme and proved global and local quadratic convergence for a dual-feasible primal-dual affine-scaling method modified according to that scheme. In the present work, similar convergence results are proved for a dual-feasible constraint-reduced variant of Mehrotra’s predictor-corrector algorithm, under less restrictive nondegeneracy assumptions. These stronger results extend to primal-dual affine scaling as a limiting case. Promising numerical results are reported. As a special case, our analysis applies to standard (unreduced) primal-dual affine scaling. While we do not prove polynomial complexity, our algorithm allows for much larger steps than in previous convergence analyses of such algorithms.</description><subject>Algorithms</subject><subject>Computation</subject><subject>Convergence</subject><subject>Convex and Discrete Geometry</subject><subject>Cost control</subject><subject>Iterative methods</subject><subject>Linear programming</subject><subject>Management Science</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Operations Research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Predictor-corrector methods</subject><subject>Statistics</subject><subject>Studies</subject><issn>0926-6003</issn><issn>1573-2894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMtKxDAUhoMoOF4ewF1x5SZ6kubSLIfBKyNudB3SNJ3p0GnGpBXc-Rq-nk9iSgVBcHUOnO__OXwInRG4JADyKhLghcJAAKs8LWwPzQiXOaaFYvtoBooKLADyQ3QU4wYAlMzpDD3MM-u72AfTdD0Orhqsq7I3ExrT9Zmvs0e3Dj6dvz4-Y7ZLQGN7H7D1Ibhxy0y78qHp19sTdFCbNrrTn3mMXm6unxd3ePl0e7-YL7HNFemxLZkoSc4UZUoSYWnNSycrrkxRCZpTyVktQFbMyFIB48pVlsuSElMbINLlx-hi6t0F_zq42OttE61rW9M5P0RNgCjBqSxUQs__oBs_hC59pxXlSkAhWYLIBNngYwyu1rvQbE14T016lKsnuTrJ1aNcPWbolImJ7VYu_Bb_H_oGStR9GQ</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Winternitz, Luke B.</creator><creator>Nicholls, Stacey O.</creator><creator>Tits, André L.</creator><creator>O’Leary, Dianne P.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20120401</creationdate><title>A constraint-reduced variant of Mehrotra’s predictor-corrector algorithm</title><author>Winternitz, Luke B. ; Nicholls, Stacey O. ; Tits, André L. ; O’Leary, Dianne P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-cb46b1349249716c2f5be7d59a8d6232754f607d4a7b90459edc57b21afa017e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Computation</topic><topic>Convergence</topic><topic>Convex and Discrete Geometry</topic><topic>Cost control</topic><topic>Iterative methods</topic><topic>Linear programming</topic><topic>Management Science</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Operations Research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Predictor-corrector methods</topic><topic>Statistics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Winternitz, Luke B.</creatorcontrib><creatorcontrib>Nicholls, Stacey O.</creatorcontrib><creatorcontrib>Tits, André L.</creatorcontrib><creatorcontrib>O’Leary, Dianne P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Computational optimization and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Winternitz, Luke B.</au><au>Nicholls, Stacey O.</au><au>Tits, André L.</au><au>O’Leary, Dianne P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A constraint-reduced variant of Mehrotra’s predictor-corrector algorithm</atitle><jtitle>Computational optimization and applications</jtitle><stitle>Comput Optim Appl</stitle><date>2012-04-01</date><risdate>2012</risdate><volume>51</volume><issue>3</issue><spage>1001</spage><epage>1036</epage><pages>1001-1036</pages><issn>0926-6003</issn><eissn>1573-2894</eissn><abstract>Consider linear programs in dual standard form with n constraints and m variables. When typical interior-point algorithms are used for the solution of such problems, updating the iterates, using direct methods for solving the linear systems and assuming a dense constraint matrix A , requires operations per iteration. When n ≫ m it is often the case that at each iteration most of the constraints are not very relevant for the construction of a good update and could be ignored to achieve computational savings. This idea was considered in the 1990s by Dantzig and Ye, Tone, Kaliski and Ye, den Hertog et al. and others. More recently, Tits et al. proposed a simple “constraint-reduction” scheme and proved global and local quadratic convergence for a dual-feasible primal-dual affine-scaling method modified according to that scheme. In the present work, similar convergence results are proved for a dual-feasible constraint-reduced variant of Mehrotra’s predictor-corrector algorithm, under less restrictive nondegeneracy assumptions. These stronger results extend to primal-dual affine scaling as a limiting case. Promising numerical results are reported. As a special case, our analysis applies to standard (unreduced) primal-dual affine scaling. While we do not prove polynomial complexity, our algorithm allows for much larger steps than in previous convergence analyses of such algorithms.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10589-010-9389-4</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0926-6003
ispartof Computational optimization and applications, 2012-04, Vol.51 (3), p.1001-1036
issn 0926-6003
1573-2894
language eng
recordid cdi_proquest_miscellaneous_1019652789
source Springer Nature - Complete Springer Journals; Business Source Complete
subjects Algorithms
Computation
Convergence
Convex and Discrete Geometry
Cost control
Iterative methods
Linear programming
Management Science
Mathematical analysis
Mathematical models
Mathematics
Mathematics and Statistics
Methods
Operations Research
Operations Research/Decision Theory
Optimization
Predictor-corrector methods
Statistics
Studies
title A constraint-reduced variant of Mehrotra’s predictor-corrector algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A17%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20constraint-reduced%20variant%20of%20Mehrotra%E2%80%99s%20predictor-corrector%20algorithm&rft.jtitle=Computational%20optimization%20and%20applications&rft.au=Winternitz,%20Luke%20B.&rft.date=2012-04-01&rft.volume=51&rft.issue=3&rft.spage=1001&rft.epage=1036&rft.pages=1001-1036&rft.issn=0926-6003&rft.eissn=1573-2894&rft_id=info:doi/10.1007/s10589-010-9389-4&rft_dat=%3Cproquest_cross%3E1019652789%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=925960874&rft_id=info:pmid/&rfr_iscdi=true