Solving the Euclidean Steiner Minimum Tree Using Cellular Stochastic Diffusion Search Algorithm
The Euclidean Steiner minimum tree problem is a classical NP-hard combinatorial optimization problem. Because of the intrinsic characteristic of the hard computability, this problem cannot be solved accurately by efficient algorithms up to now. Due to the extensive applications in real world, it is...
Gespeichert in:
Veröffentlicht in: | Shanghai jiao tong da xue xue bao 2011-12, Vol.16 (6), p.734-741 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 741 |
---|---|
container_issue | 6 |
container_start_page | 734 |
container_title | Shanghai jiao tong da xue xue bao |
container_volume | 16 |
creator | 张瑾 赵雅靓 马良 |
description | The Euclidean Steiner minimum tree problem is a classical NP-hard combinatorial optimization problem. Because of the intrinsic characteristic of the hard computability, this problem cannot be solved accurately by efficient algorithms up to now. Due to the extensive applications in real world, it is quite important to find some heuristics for it. The stochastic diffusion search algorithm is a newly population-based algorithm whose operating mechanism is quite different from ordinary intelligent algorithms, so this algorithm has its own advantage in solving some optimization problems. This paper has carefully studied the stochastic diffusion search algorithm and designed a cellular automata stochastic diffusion search algorithm for the Euclidean Steiner minimum trec problem which has low time complexity. Practical results show that the proposed algorithm can find approving results in short time even for the large scale size, while exact algorithms need to cost several hours. |
doi_str_mv | 10.1007/s12204-011-1218-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019648702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>40216472</cqvip_id><sourcerecordid>1019648702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2140-f603cec4967b3ffbea5a8572118bdbf339b347ebe41cfc80d5a8bc6f3b5ea1d63</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhiMEEqXwAGxhYwn4OM5trEq5SEUMbWfLcY4TV0nc2gkSb4-rVIxMPpK_71z-ILgH8gSEZM8OKCUsIgARUMgjchHMoCiSKIc8v_S1hyKAjF4HN87tCWEkjotZwDem_dZ9HQ4NhqtRtrpC0YebAXWPNvzUve7GLtxaxHDnTuAS23ZshfWMkY1wg5bhi1ZqdNp4EYWVTbhoa2P10HS3wZUSrcO78zsPdq-r7fI9Wn-9fSwX60hSYCRSKYklSlakWRkrVaJIRJ5kFCAvq1L5VcuYZVgiA6lkTir_XcpUxWWCAqo0ngePU9-DNccR3cA77aRfVfRoRseBQJGyPCPUozCh0hrnLCp-sLoT9sdD_JQTn8LkPkx-CpMT79DJcZ7ta7R8b0bb-4v-lR7OgxrT10fv_U1ihELKMhr_An3sg48</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019648702</pqid></control><display><type>article</type><title>Solving the Euclidean Steiner Minimum Tree Using Cellular Stochastic Diffusion Search Algorithm</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>张瑾 赵雅靓 马良</creator><creatorcontrib>张瑾 赵雅靓 马良</creatorcontrib><description>The Euclidean Steiner minimum tree problem is a classical NP-hard combinatorial optimization problem. Because of the intrinsic characteristic of the hard computability, this problem cannot be solved accurately by efficient algorithms up to now. Due to the extensive applications in real world, it is quite important to find some heuristics for it. The stochastic diffusion search algorithm is a newly population-based algorithm whose operating mechanism is quite different from ordinary intelligent algorithms, so this algorithm has its own advantage in solving some optimization problems. This paper has carefully studied the stochastic diffusion search algorithm and designed a cellular automata stochastic diffusion search algorithm for the Euclidean Steiner minimum trec problem which has low time complexity. Practical results show that the proposed algorithm can find approving results in short time even for the large scale size, while exact algorithms need to cost several hours.</description><identifier>ISSN: 1007-1172</identifier><identifier>EISSN: 1995-8188</identifier><identifier>DOI: 10.1007/s12204-011-1218-0</identifier><language>eng</language><publisher>Heidelberg: Shanghai Jiaotong University Press</publisher><subject>Algorithms ; Architecture ; Cellular automata ; Combinatorial analysis ; Computer Science ; Diffusion ; Electrical Engineering ; Engineering ; Life Sciences ; Materials Science ; Optimization ; Search algorithms ; Stochasticity ; Trees</subject><ispartof>Shanghai jiao tong da xue xue bao, 2011-12, Vol.16 (6), p.734-741</ispartof><rights>Shanghai Jiaotong University and Springer-Verlag Berlin Heidelberg 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2140-f603cec4967b3ffbea5a8572118bdbf339b347ebe41cfc80d5a8bc6f3b5ea1d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85391X/85391X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12204-011-1218-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12204-011-1218-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>张瑾 赵雅靓 马良</creatorcontrib><title>Solving the Euclidean Steiner Minimum Tree Using Cellular Stochastic Diffusion Search Algorithm</title><title>Shanghai jiao tong da xue xue bao</title><addtitle>J. Shanghai Jiaotong Univ. (Sci.)</addtitle><addtitle>Journal of Shanghai Jiaotong university</addtitle><description>The Euclidean Steiner minimum tree problem is a classical NP-hard combinatorial optimization problem. Because of the intrinsic characteristic of the hard computability, this problem cannot be solved accurately by efficient algorithms up to now. Due to the extensive applications in real world, it is quite important to find some heuristics for it. The stochastic diffusion search algorithm is a newly population-based algorithm whose operating mechanism is quite different from ordinary intelligent algorithms, so this algorithm has its own advantage in solving some optimization problems. This paper has carefully studied the stochastic diffusion search algorithm and designed a cellular automata stochastic diffusion search algorithm for the Euclidean Steiner minimum trec problem which has low time complexity. Practical results show that the proposed algorithm can find approving results in short time even for the large scale size, while exact algorithms need to cost several hours.</description><subject>Algorithms</subject><subject>Architecture</subject><subject>Cellular automata</subject><subject>Combinatorial analysis</subject><subject>Computer Science</subject><subject>Diffusion</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Life Sciences</subject><subject>Materials Science</subject><subject>Optimization</subject><subject>Search algorithms</subject><subject>Stochasticity</subject><subject>Trees</subject><issn>1007-1172</issn><issn>1995-8188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhiMEEqXwAGxhYwn4OM5trEq5SEUMbWfLcY4TV0nc2gkSb4-rVIxMPpK_71z-ILgH8gSEZM8OKCUsIgARUMgjchHMoCiSKIc8v_S1hyKAjF4HN87tCWEkjotZwDem_dZ9HQ4NhqtRtrpC0YebAXWPNvzUve7GLtxaxHDnTuAS23ZshfWMkY1wg5bhi1ZqdNp4EYWVTbhoa2P10HS3wZUSrcO78zsPdq-r7fI9Wn-9fSwX60hSYCRSKYklSlakWRkrVaJIRJ5kFCAvq1L5VcuYZVgiA6lkTir_XcpUxWWCAqo0ngePU9-DNccR3cA77aRfVfRoRseBQJGyPCPUozCh0hrnLCp-sLoT9sdD_JQTn8LkPkx-CpMT79DJcZ7ta7R8b0bb-4v-lR7OgxrT10fv_U1ihELKMhr_An3sg48</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>张瑾 赵雅靓 马良</creator><general>Shanghai Jiaotong University Press</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201112</creationdate><title>Solving the Euclidean Steiner Minimum Tree Using Cellular Stochastic Diffusion Search Algorithm</title><author>张瑾 赵雅靓 马良</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2140-f603cec4967b3ffbea5a8572118bdbf339b347ebe41cfc80d5a8bc6f3b5ea1d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Architecture</topic><topic>Cellular automata</topic><topic>Combinatorial analysis</topic><topic>Computer Science</topic><topic>Diffusion</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Life Sciences</topic><topic>Materials Science</topic><topic>Optimization</topic><topic>Search algorithms</topic><topic>Stochasticity</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>张瑾 赵雅靓 马良</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Shanghai jiao tong da xue xue bao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>张瑾 赵雅靓 马良</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving the Euclidean Steiner Minimum Tree Using Cellular Stochastic Diffusion Search Algorithm</atitle><jtitle>Shanghai jiao tong da xue xue bao</jtitle><stitle>J. Shanghai Jiaotong Univ. (Sci.)</stitle><addtitle>Journal of Shanghai Jiaotong university</addtitle><date>2011-12</date><risdate>2011</risdate><volume>16</volume><issue>6</issue><spage>734</spage><epage>741</epage><pages>734-741</pages><issn>1007-1172</issn><eissn>1995-8188</eissn><abstract>The Euclidean Steiner minimum tree problem is a classical NP-hard combinatorial optimization problem. Because of the intrinsic characteristic of the hard computability, this problem cannot be solved accurately by efficient algorithms up to now. Due to the extensive applications in real world, it is quite important to find some heuristics for it. The stochastic diffusion search algorithm is a newly population-based algorithm whose operating mechanism is quite different from ordinary intelligent algorithms, so this algorithm has its own advantage in solving some optimization problems. This paper has carefully studied the stochastic diffusion search algorithm and designed a cellular automata stochastic diffusion search algorithm for the Euclidean Steiner minimum trec problem which has low time complexity. Practical results show that the proposed algorithm can find approving results in short time even for the large scale size, while exact algorithms need to cost several hours.</abstract><cop>Heidelberg</cop><pub>Shanghai Jiaotong University Press</pub><doi>10.1007/s12204-011-1218-0</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1007-1172 |
ispartof | Shanghai jiao tong da xue xue bao, 2011-12, Vol.16 (6), p.734-741 |
issn | 1007-1172 1995-8188 |
language | eng |
recordid | cdi_proquest_miscellaneous_1019648702 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Algorithms Architecture Cellular automata Combinatorial analysis Computer Science Diffusion Electrical Engineering Engineering Life Sciences Materials Science Optimization Search algorithms Stochasticity Trees |
title | Solving the Euclidean Steiner Minimum Tree Using Cellular Stochastic Diffusion Search Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A37%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20the%20Euclidean%20Steiner%20Minimum%20Tree%20Using%20Cellular%20Stochastic%20Diffusion%20Search%20Algorithm&rft.jtitle=Shanghai%20jiao%20tong%20da%20xue%20xue%20bao&rft.au=%E5%BC%A0%E7%91%BE%20%E8%B5%B5%E9%9B%85%E9%9D%93%20%E9%A9%AC%E8%89%AF&rft.date=2011-12&rft.volume=16&rft.issue=6&rft.spage=734&rft.epage=741&rft.pages=734-741&rft.issn=1007-1172&rft.eissn=1995-8188&rft_id=info:doi/10.1007/s12204-011-1218-0&rft_dat=%3Cproquest_cross%3E1019648702%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019648702&rft_id=info:pmid/&rft_cqvip_id=40216472&rfr_iscdi=true |