Structural and physical properties of highly piezoresistive nickel containing hydrogenated carbon thin films

Nickel containing amorphous hydrogenated carbon (Ni:a-C:H) thin films prepared by reactive sputtering have a high potential for use as piezoresistive sensors. Investigations by means of X-ray diffraction (XRD), transmission electron microscopy, energy-dispersive X-ray spectroscopy, and magnetic char...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diamond and related materials 2012-05, Vol.25, p.50-58
Hauptverfasser: Koppert, Ralf, Uhlig, Steffen, Schmid-Engel, Hanna, Göttel, Dirk, Probst, Anne-Catherine, Schultes, Günter, Werner, Ulf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 58
container_issue
container_start_page 50
container_title Diamond and related materials
container_volume 25
creator Koppert, Ralf
Uhlig, Steffen
Schmid-Engel, Hanna
Göttel, Dirk
Probst, Anne-Catherine
Schultes, Günter
Werner, Ulf
description Nickel containing amorphous hydrogenated carbon (Ni:a-C:H) thin films prepared by reactive sputtering have a high potential for use as piezoresistive sensors. Investigations by means of X-ray diffraction (XRD), transmission electron microscopy, energy-dispersive X-ray spectroscopy, and magnetic characterizations indicate that sputtering parameters and heat treatment influence the film composition, the microscopic structure, and some relevant macroscopic physical properties. The films are heterogeneous in nature and consist of either nanometer sized hcp nickel, nickel carbide (these phases being indistinguishable by XRD), or fcc nickel clusters encapsulated by graphite-like carbon shells. The nature of the metal clusters in the thin films has a strong effect on its magnetic properties. For approximately 55at.% Ni the electrical resistivity of the film is nearly temperature independent over a broad temperature range from 100K to 400K. The strain sensitivity, with a gauge factor of 20, is up to ten times higher than conventional temperature independent strain sensitive films. Compared to industry standard NiCr functional layers used for pressure sensors, Ni:a-C:H films provide a ten fold higher output signal. ► Piezoresistive Ni:a-C:H thin films exhibit gauge factors >20. ► Temperature independent resistance can be achieved by a proper Ni/C ratio. ► High gauge factors and temperature independent resistance simultaneously demonstrated. ► TEM analysis reveals Ni-clusters are embedded in a carbon matrix. ► Homogeneously distributed H (~12at.%) over the film thickness was found.
doi_str_mv 10.1016/j.diamond.2012.01.031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019648052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925963512000416</els_id><sourcerecordid>1019648052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-ef950dc91118f1b2021160cc5485338e09a1d6a09601c9afe897a109f15f10dc3</originalsourceid><addsrcrecordid>eNqFkE2LFDEQhoMoOK7-BCEXwUv3pron2c5JZPELFjyo55BNKtM19iRtklkYf71ZZvC6p6LgeeulHsbeguhBgLre957sIUXfDwKGXkAvRnjGNjDd6E4INTxnG6EH2Wk1ypfsVSl70UC9hQ1bftR8dPWY7cJt9HydT4VcW9acVsyVsPAU-Ey7eTnxlfBvylioVHpAHsn9xoW7FKulSHHH55PPaYfRVvTc2XyfIq8zRR5oOZTX7EWwS8E3l3nFfn3-9PP2a3f3_cu32493nduOU-0waCm80wAwBbgfxACghHNyO8lxnFBoC15ZoZUAp23ASd9YEDqADNCC4xV7f77bnvhzxFLNgYrDZbER07GYZk2r7STk0FB5Rl1OpWQMZs10sPnUoEdOmb252DWPdo0A0-y23LtLhS1NV8g2Oir_w4PUMEmlG_fhzGH794Ewm-IIo0NPGV01PtETTf8AWTCUyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019648052</pqid></control><display><type>article</type><title>Structural and physical properties of highly piezoresistive nickel containing hydrogenated carbon thin films</title><source>Elsevier ScienceDirect Journals</source><creator>Koppert, Ralf ; Uhlig, Steffen ; Schmid-Engel, Hanna ; Göttel, Dirk ; Probst, Anne-Catherine ; Schultes, Günter ; Werner, Ulf</creator><creatorcontrib>Koppert, Ralf ; Uhlig, Steffen ; Schmid-Engel, Hanna ; Göttel, Dirk ; Probst, Anne-Catherine ; Schultes, Günter ; Werner, Ulf</creatorcontrib><description>Nickel containing amorphous hydrogenated carbon (Ni:a-C:H) thin films prepared by reactive sputtering have a high potential for use as piezoresistive sensors. Investigations by means of X-ray diffraction (XRD), transmission electron microscopy, energy-dispersive X-ray spectroscopy, and magnetic characterizations indicate that sputtering parameters and heat treatment influence the film composition, the microscopic structure, and some relevant macroscopic physical properties. The films are heterogeneous in nature and consist of either nanometer sized hcp nickel, nickel carbide (these phases being indistinguishable by XRD), or fcc nickel clusters encapsulated by graphite-like carbon shells. The nature of the metal clusters in the thin films has a strong effect on its magnetic properties. For approximately 55at.% Ni the electrical resistivity of the film is nearly temperature independent over a broad temperature range from 100K to 400K. The strain sensitivity, with a gauge factor of 20, is up to ten times higher than conventional temperature independent strain sensitive films. Compared to industry standard NiCr functional layers used for pressure sensors, Ni:a-C:H films provide a ten fold higher output signal. ► Piezoresistive Ni:a-C:H thin films exhibit gauge factors &gt;20. ► Temperature independent resistance can be achieved by a proper Ni/C ratio. ► High gauge factors and temperature independent resistance simultaneously demonstrated. ► TEM analysis reveals Ni-clusters are embedded in a carbon matrix. ► Homogeneously distributed H (~12at.%) over the film thickness was found.</description><identifier>ISSN: 0925-9635</identifier><identifier>EISSN: 1879-0062</identifier><identifier>DOI: 10.1016/j.diamond.2012.01.031</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Carbon ; Composition and phase identification ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Deposition by sputtering ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Graphite-like carbon ; High gauge factor ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; NanoNi@C ; Ni:a-C:H ; Nickel ; Nickel carbon nanocomposite ; Physical properties ; Physics ; Piezoresistance ; Pressure sensor ; Pressure sensors ; Specific materials ; Sputtering ; Strain gages ; Strain gauge ; Strain sensitivity ; Structure and morphology; thickness ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thin film structure and morphology ; Thin films ; X-rays</subject><ispartof>Diamond and related materials, 2012-05, Vol.25, p.50-58</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-ef950dc91118f1b2021160cc5485338e09a1d6a09601c9afe897a109f15f10dc3</citedby><cites>FETCH-LOGICAL-c438t-ef950dc91118f1b2021160cc5485338e09a1d6a09601c9afe897a109f15f10dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925963512000416$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25918569$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Koppert, Ralf</creatorcontrib><creatorcontrib>Uhlig, Steffen</creatorcontrib><creatorcontrib>Schmid-Engel, Hanna</creatorcontrib><creatorcontrib>Göttel, Dirk</creatorcontrib><creatorcontrib>Probst, Anne-Catherine</creatorcontrib><creatorcontrib>Schultes, Günter</creatorcontrib><creatorcontrib>Werner, Ulf</creatorcontrib><title>Structural and physical properties of highly piezoresistive nickel containing hydrogenated carbon thin films</title><title>Diamond and related materials</title><description>Nickel containing amorphous hydrogenated carbon (Ni:a-C:H) thin films prepared by reactive sputtering have a high potential for use as piezoresistive sensors. Investigations by means of X-ray diffraction (XRD), transmission electron microscopy, energy-dispersive X-ray spectroscopy, and magnetic characterizations indicate that sputtering parameters and heat treatment influence the film composition, the microscopic structure, and some relevant macroscopic physical properties. The films are heterogeneous in nature and consist of either nanometer sized hcp nickel, nickel carbide (these phases being indistinguishable by XRD), or fcc nickel clusters encapsulated by graphite-like carbon shells. The nature of the metal clusters in the thin films has a strong effect on its magnetic properties. For approximately 55at.% Ni the electrical resistivity of the film is nearly temperature independent over a broad temperature range from 100K to 400K. The strain sensitivity, with a gauge factor of 20, is up to ten times higher than conventional temperature independent strain sensitive films. Compared to industry standard NiCr functional layers used for pressure sensors, Ni:a-C:H films provide a ten fold higher output signal. ► Piezoresistive Ni:a-C:H thin films exhibit gauge factors &gt;20. ► Temperature independent resistance can be achieved by a proper Ni/C ratio. ► High gauge factors and temperature independent resistance simultaneously demonstrated. ► TEM analysis reveals Ni-clusters are embedded in a carbon matrix. ► Homogeneously distributed H (~12at.%) over the film thickness was found.</description><subject>Carbon</subject><subject>Composition and phase identification</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deposition by sputtering</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Graphite-like carbon</subject><subject>High gauge factor</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>NanoNi@C</subject><subject>Ni:a-C:H</subject><subject>Nickel</subject><subject>Nickel carbon nanocomposite</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Piezoresistance</subject><subject>Pressure sensor</subject><subject>Pressure sensors</subject><subject>Specific materials</subject><subject>Sputtering</subject><subject>Strain gages</subject><subject>Strain gauge</subject><subject>Strain sensitivity</subject><subject>Structure and morphology; thickness</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thin film structure and morphology</subject><subject>Thin films</subject><subject>X-rays</subject><issn>0925-9635</issn><issn>1879-0062</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE2LFDEQhoMoOK7-BCEXwUv3pron2c5JZPELFjyo55BNKtM19iRtklkYf71ZZvC6p6LgeeulHsbeguhBgLre957sIUXfDwKGXkAvRnjGNjDd6E4INTxnG6EH2Wk1ypfsVSl70UC9hQ1bftR8dPWY7cJt9HydT4VcW9acVsyVsPAU-Ey7eTnxlfBvylioVHpAHsn9xoW7FKulSHHH55PPaYfRVvTc2XyfIq8zRR5oOZTX7EWwS8E3l3nFfn3-9PP2a3f3_cu32493nduOU-0waCm80wAwBbgfxACghHNyO8lxnFBoC15ZoZUAp23ASd9YEDqADNCC4xV7f77bnvhzxFLNgYrDZbER07GYZk2r7STk0FB5Rl1OpWQMZs10sPnUoEdOmb252DWPdo0A0-y23LtLhS1NV8g2Oir_w4PUMEmlG_fhzGH794Ewm-IIo0NPGV01PtETTf8AWTCUyA</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Koppert, Ralf</creator><creator>Uhlig, Steffen</creator><creator>Schmid-Engel, Hanna</creator><creator>Göttel, Dirk</creator><creator>Probst, Anne-Catherine</creator><creator>Schultes, Günter</creator><creator>Werner, Ulf</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20120501</creationdate><title>Structural and physical properties of highly piezoresistive nickel containing hydrogenated carbon thin films</title><author>Koppert, Ralf ; Uhlig, Steffen ; Schmid-Engel, Hanna ; Göttel, Dirk ; Probst, Anne-Catherine ; Schultes, Günter ; Werner, Ulf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-ef950dc91118f1b2021160cc5485338e09a1d6a09601c9afe897a109f15f10dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Carbon</topic><topic>Composition and phase identification</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deposition by sputtering</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Graphite-like carbon</topic><topic>High gauge factor</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>NanoNi@C</topic><topic>Ni:a-C:H</topic><topic>Nickel</topic><topic>Nickel carbon nanocomposite</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Piezoresistance</topic><topic>Pressure sensor</topic><topic>Pressure sensors</topic><topic>Specific materials</topic><topic>Sputtering</topic><topic>Strain gages</topic><topic>Strain gauge</topic><topic>Strain sensitivity</topic><topic>Structure and morphology; thickness</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thin film structure and morphology</topic><topic>Thin films</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koppert, Ralf</creatorcontrib><creatorcontrib>Uhlig, Steffen</creatorcontrib><creatorcontrib>Schmid-Engel, Hanna</creatorcontrib><creatorcontrib>Göttel, Dirk</creatorcontrib><creatorcontrib>Probst, Anne-Catherine</creatorcontrib><creatorcontrib>Schultes, Günter</creatorcontrib><creatorcontrib>Werner, Ulf</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Diamond and related materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koppert, Ralf</au><au>Uhlig, Steffen</au><au>Schmid-Engel, Hanna</au><au>Göttel, Dirk</au><au>Probst, Anne-Catherine</au><au>Schultes, Günter</au><au>Werner, Ulf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and physical properties of highly piezoresistive nickel containing hydrogenated carbon thin films</atitle><jtitle>Diamond and related materials</jtitle><date>2012-05-01</date><risdate>2012</risdate><volume>25</volume><spage>50</spage><epage>58</epage><pages>50-58</pages><issn>0925-9635</issn><eissn>1879-0062</eissn><abstract>Nickel containing amorphous hydrogenated carbon (Ni:a-C:H) thin films prepared by reactive sputtering have a high potential for use as piezoresistive sensors. Investigations by means of X-ray diffraction (XRD), transmission electron microscopy, energy-dispersive X-ray spectroscopy, and magnetic characterizations indicate that sputtering parameters and heat treatment influence the film composition, the microscopic structure, and some relevant macroscopic physical properties. The films are heterogeneous in nature and consist of either nanometer sized hcp nickel, nickel carbide (these phases being indistinguishable by XRD), or fcc nickel clusters encapsulated by graphite-like carbon shells. The nature of the metal clusters in the thin films has a strong effect on its magnetic properties. For approximately 55at.% Ni the electrical resistivity of the film is nearly temperature independent over a broad temperature range from 100K to 400K. The strain sensitivity, with a gauge factor of 20, is up to ten times higher than conventional temperature independent strain sensitive films. Compared to industry standard NiCr functional layers used for pressure sensors, Ni:a-C:H films provide a ten fold higher output signal. ► Piezoresistive Ni:a-C:H thin films exhibit gauge factors &gt;20. ► Temperature independent resistance can be achieved by a proper Ni/C ratio. ► High gauge factors and temperature independent resistance simultaneously demonstrated. ► TEM analysis reveals Ni-clusters are embedded in a carbon matrix. ► Homogeneously distributed H (~12at.%) over the film thickness was found.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.diamond.2012.01.031</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-9635
ispartof Diamond and related materials, 2012-05, Vol.25, p.50-58
issn 0925-9635
1879-0062
language eng
recordid cdi_proquest_miscellaneous_1019648052
source Elsevier ScienceDirect Journals
subjects Carbon
Composition and phase identification
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Deposition by sputtering
Exact sciences and technology
Fullerenes and related materials
diamonds, graphite
Graphite-like carbon
High gauge factor
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
NanoNi@C
Ni:a-C:H
Nickel
Nickel carbon nanocomposite
Physical properties
Physics
Piezoresistance
Pressure sensor
Pressure sensors
Specific materials
Sputtering
Strain gages
Strain gauge
Strain sensitivity
Structure and morphology
thickness
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Thin film structure and morphology
Thin films
X-rays
title Structural and physical properties of highly piezoresistive nickel containing hydrogenated carbon thin films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A12%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20physical%20properties%20of%20highly%20piezoresistive%20nickel%20containing%20hydrogenated%20carbon%20thin%20films&rft.jtitle=Diamond%20and%20related%20materials&rft.au=Koppert,%20Ralf&rft.date=2012-05-01&rft.volume=25&rft.spage=50&rft.epage=58&rft.pages=50-58&rft.issn=0925-9635&rft.eissn=1879-0062&rft_id=info:doi/10.1016/j.diamond.2012.01.031&rft_dat=%3Cproquest_cross%3E1019648052%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019648052&rft_id=info:pmid/&rft_els_id=S0925963512000416&rfr_iscdi=true