Feature Extraction for Change-Point Detection Using Stationary Subspace Analysis

Detecting changes in high-dimensional time series is difficult because it involves the comparison of probability densities that need to be estimated from finite samples. In this paper, we present the first feature extraction method tailored to change-point detection, which is based on an extended ve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2012-04, Vol.23 (4), p.631-643
Hauptverfasser: Blythe, D. A. J., von Bunau, P., Meinecke, F. C., Muller, K-R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!