Feature Extraction for Change-Point Detection Using Stationary Subspace Analysis

Detecting changes in high-dimensional time series is difficult because it involves the comparison of probability densities that need to be estimated from finite samples. In this paper, we present the first feature extraction method tailored to change-point detection, which is based on an extended ve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2012-04, Vol.23 (4), p.631-643
Hauptverfasser: Blythe, D. A. J., von Bunau, P., Meinecke, F. C., Muller, K-R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 643
container_issue 4
container_start_page 631
container_title IEEE transaction on neural networks and learning systems
container_volume 23
creator Blythe, D. A. J.
von Bunau, P.
Meinecke, F. C.
Muller, K-R
description Detecting changes in high-dimensional time series is difficult because it involves the comparison of probability densities that need to be estimated from finite samples. In this paper, we present the first feature extraction method tailored to change-point detection, which is based on an extended version of stationary subspace analysis. We reduce the dimensionality of the data to the most nonstationary directions, which are most informative for detecting state changes in the time series. In extensive simulations on synthetic data, we show that the accuracy of three change-point detection algorithms is significantly increased by a prior feature extraction step. These findings are confirmed in an application to industrial fault monitoring.
doi_str_mv 10.1109/TNNLS.2012.2185811
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019647317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6151166</ieee_id><sourcerecordid>1523405680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-1fa0a344bc7fc685c9eed649ba7fcd7b99b18d431260315917749c50ab36b0b93</originalsourceid><addsrcrecordid>eNqFkV9LHDEUxUNRqli_QIUyCEJfZs3N_zzKqm1hUWEVfBuS7B0dmZ3ZJjOg375Zd7uFvpiX5HJ_93BPDiFfgU4AqD2_v7mZzSeMApswMNIAfCKHDBQrGTdmb_fWjwfkOKUXmo-iUgn7mRwwYaikQh2Su2t0wxixuHodogtD03dF3cdi-uy6Jyzv-qYbiksccNN6SE33VMwHt65cfCvmo08rF7C46Fz7lpr0hezXrk14vL2PyMP11f30Zzm7_fFrejErg9B2KKF21HEhfNB1UEYGi7jIy3mX64X21nowC8GBKcpBWtBa2CCp81x56i0_It83uqvY_x4xDdWySQHb1nXYj6kCybjIfg39GKVgldAcdEZP_0Nf-jFma6myLK-nLYMMsQ0UYp9SxLpaxWaZfyMrVetwqvdwqnU41TacPPRtqzz6JS52I3-jyMDZFnApuLaOrgtN-sdJbaxgazcnG65BxF1bgQRQiv8Bn_WeeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926497921</pqid></control><display><type>article</type><title>Feature Extraction for Change-Point Detection Using Stationary Subspace Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Blythe, D. A. J. ; von Bunau, P. ; Meinecke, F. C. ; Muller, K-R</creator><creatorcontrib>Blythe, D. A. J. ; von Bunau, P. ; Meinecke, F. C. ; Muller, K-R</creatorcontrib><description>Detecting changes in high-dimensional time series is difficult because it involves the comparison of probability densities that need to be estimated from finite samples. In this paper, we present the first feature extraction method tailored to change-point detection, which is based on an extended version of stationary subspace analysis. We reduce the dimensionality of the data to the most nonstationary directions, which are most informative for detecting state changes in the time series. In extensive simulations on synthetic data, we show that the accuracy of three change-point detection algorithms is significantly increased by a prior feature extraction step. These findings are confirmed in an application to industrial fault monitoring.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2012.2185811</identifier><identifier>PMID: 24805046</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Accuracy ; Applied sciences ; Change-point detection ; Computer science; control theory; systems ; Computer simulation ; Control theory. Systems ; Covariance matrix ; Data models ; Density ; Detection algorithms ; Exact sciences and technology ; Feature extraction ; high-dimensional data ; Inference from stochastic processes; time series analysis ; Mathematical analysis ; Mathematics ; Modelling and identification ; Monitoring ; Neural networks ; Probability and statistics ; Sciences and techniques of general use ; segmentation ; stationarity ; Statistics ; Subspaces ; Time series ; Time series analysis</subject><ispartof>IEEE transaction on neural networks and learning systems, 2012-04, Vol.23 (4), p.631-643</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2012</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-1fa0a344bc7fc685c9eed649ba7fcd7b99b18d431260315917749c50ab36b0b93</citedby><cites>FETCH-LOGICAL-c479t-1fa0a344bc7fc685c9eed649ba7fcd7b99b18d431260315917749c50ab36b0b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6151166$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6151166$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25789420$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24805046$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Blythe, D. A. J.</creatorcontrib><creatorcontrib>von Bunau, P.</creatorcontrib><creatorcontrib>Meinecke, F. C.</creatorcontrib><creatorcontrib>Muller, K-R</creatorcontrib><title>Feature Extraction for Change-Point Detection Using Stationary Subspace Analysis</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Detecting changes in high-dimensional time series is difficult because it involves the comparison of probability densities that need to be estimated from finite samples. In this paper, we present the first feature extraction method tailored to change-point detection, which is based on an extended version of stationary subspace analysis. We reduce the dimensionality of the data to the most nonstationary directions, which are most informative for detecting state changes in the time series. In extensive simulations on synthetic data, we show that the accuracy of three change-point detection algorithms is significantly increased by a prior feature extraction step. These findings are confirmed in an application to industrial fault monitoring.</description><subject>Accuracy</subject><subject>Applied sciences</subject><subject>Change-point detection</subject><subject>Computer science; control theory; systems</subject><subject>Computer simulation</subject><subject>Control theory. Systems</subject><subject>Covariance matrix</subject><subject>Data models</subject><subject>Density</subject><subject>Detection algorithms</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>high-dimensional data</subject><subject>Inference from stochastic processes; time series analysis</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Modelling and identification</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>segmentation</subject><subject>stationarity</subject><subject>Statistics</subject><subject>Subspaces</subject><subject>Time series</subject><subject>Time series analysis</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkV9LHDEUxUNRqli_QIUyCEJfZs3N_zzKqm1hUWEVfBuS7B0dmZ3ZJjOg375Zd7uFvpiX5HJ_93BPDiFfgU4AqD2_v7mZzSeMApswMNIAfCKHDBQrGTdmb_fWjwfkOKUXmo-iUgn7mRwwYaikQh2Su2t0wxixuHodogtD03dF3cdi-uy6Jyzv-qYbiksccNN6SE33VMwHt65cfCvmo08rF7C46Fz7lpr0hezXrk14vL2PyMP11f30Zzm7_fFrejErg9B2KKF21HEhfNB1UEYGi7jIy3mX64X21nowC8GBKcpBWtBa2CCp81x56i0_It83uqvY_x4xDdWySQHb1nXYj6kCybjIfg39GKVgldAcdEZP_0Nf-jFma6myLK-nLYMMsQ0UYp9SxLpaxWaZfyMrVetwqvdwqnU41TacPPRtqzz6JS52I3-jyMDZFnApuLaOrgtN-sdJbaxgazcnG65BxF1bgQRQiv8Bn_WeeQ</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Blythe, D. A. J.</creator><creator>von Bunau, P.</creator><creator>Meinecke, F. C.</creator><creator>Muller, K-R</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20120401</creationdate><title>Feature Extraction for Change-Point Detection Using Stationary Subspace Analysis</title><author>Blythe, D. A. J. ; von Bunau, P. ; Meinecke, F. C. ; Muller, K-R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-1fa0a344bc7fc685c9eed649ba7fcd7b99b18d431260315917749c50ab36b0b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Applied sciences</topic><topic>Change-point detection</topic><topic>Computer science; control theory; systems</topic><topic>Computer simulation</topic><topic>Control theory. Systems</topic><topic>Covariance matrix</topic><topic>Data models</topic><topic>Density</topic><topic>Detection algorithms</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>high-dimensional data</topic><topic>Inference from stochastic processes; time series analysis</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Modelling and identification</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>segmentation</topic><topic>stationarity</topic><topic>Statistics</topic><topic>Subspaces</topic><topic>Time series</topic><topic>Time series analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Blythe, D. A. J.</creatorcontrib><creatorcontrib>von Bunau, P.</creatorcontrib><creatorcontrib>Meinecke, F. C.</creatorcontrib><creatorcontrib>Muller, K-R</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Blythe, D. A. J.</au><au>von Bunau, P.</au><au>Meinecke, F. C.</au><au>Muller, K-R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature Extraction for Change-Point Detection Using Stationary Subspace Analysis</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2012-04-01</date><risdate>2012</risdate><volume>23</volume><issue>4</issue><spage>631</spage><epage>643</epage><pages>631-643</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Detecting changes in high-dimensional time series is difficult because it involves the comparison of probability densities that need to be estimated from finite samples. In this paper, we present the first feature extraction method tailored to change-point detection, which is based on an extended version of stationary subspace analysis. We reduce the dimensionality of the data to the most nonstationary directions, which are most informative for detecting state changes in the time series. In extensive simulations on synthetic data, we show that the accuracy of three change-point detection algorithms is significantly increased by a prior feature extraction step. These findings are confirmed in an application to industrial fault monitoring.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>24805046</pmid><doi>10.1109/TNNLS.2012.2185811</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2012-04, Vol.23 (4), p.631-643
issn 2162-237X
2162-2388
language eng
recordid cdi_proquest_miscellaneous_1019647317
source IEEE Electronic Library (IEL)
subjects Accuracy
Applied sciences
Change-point detection
Computer science
control theory
systems
Computer simulation
Control theory. Systems
Covariance matrix
Data models
Density
Detection algorithms
Exact sciences and technology
Feature extraction
high-dimensional data
Inference from stochastic processes
time series analysis
Mathematical analysis
Mathematics
Modelling and identification
Monitoring
Neural networks
Probability and statistics
Sciences and techniques of general use
segmentation
stationarity
Statistics
Subspaces
Time series
Time series analysis
title Feature Extraction for Change-Point Detection Using Stationary Subspace Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A27%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20Extraction%20for%20Change-Point%20Detection%20Using%20Stationary%20Subspace%20Analysis&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Blythe,%20D.%20A.%20J.&rft.date=2012-04-01&rft.volume=23&rft.issue=4&rft.spage=631&rft.epage=643&rft.pages=631-643&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2012.2185811&rft_dat=%3Cproquest_RIE%3E1523405680%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926497921&rft_id=info:pmid/24805046&rft_ieee_id=6151166&rfr_iscdi=true