Feature Extraction for Change-Point Detection Using Stationary Subspace Analysis
Detecting changes in high-dimensional time series is difficult because it involves the comparison of probability densities that need to be estimated from finite samples. In this paper, we present the first feature extraction method tailored to change-point detection, which is based on an extended ve...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2012-04, Vol.23 (4), p.631-643 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 643 |
---|---|
container_issue | 4 |
container_start_page | 631 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 23 |
creator | Blythe, D. A. J. von Bunau, P. Meinecke, F. C. Muller, K-R |
description | Detecting changes in high-dimensional time series is difficult because it involves the comparison of probability densities that need to be estimated from finite samples. In this paper, we present the first feature extraction method tailored to change-point detection, which is based on an extended version of stationary subspace analysis. We reduce the dimensionality of the data to the most nonstationary directions, which are most informative for detecting state changes in the time series. In extensive simulations on synthetic data, we show that the accuracy of three change-point detection algorithms is significantly increased by a prior feature extraction step. These findings are confirmed in an application to industrial fault monitoring. |
doi_str_mv | 10.1109/TNNLS.2012.2185811 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019647317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6151166</ieee_id><sourcerecordid>1523405680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-1fa0a344bc7fc685c9eed649ba7fcd7b99b18d431260315917749c50ab36b0b93</originalsourceid><addsrcrecordid>eNqFkV9LHDEUxUNRqli_QIUyCEJfZs3N_zzKqm1hUWEVfBuS7B0dmZ3ZJjOg375Zd7uFvpiX5HJ_93BPDiFfgU4AqD2_v7mZzSeMApswMNIAfCKHDBQrGTdmb_fWjwfkOKUXmo-iUgn7mRwwYaikQh2Su2t0wxixuHodogtD03dF3cdi-uy6Jyzv-qYbiksccNN6SE33VMwHt65cfCvmo08rF7C46Fz7lpr0hezXrk14vL2PyMP11f30Zzm7_fFrejErg9B2KKF21HEhfNB1UEYGi7jIy3mX64X21nowC8GBKcpBWtBa2CCp81x56i0_It83uqvY_x4xDdWySQHb1nXYj6kCybjIfg39GKVgldAcdEZP_0Nf-jFma6myLK-nLYMMsQ0UYp9SxLpaxWaZfyMrVetwqvdwqnU41TacPPRtqzz6JS52I3-jyMDZFnApuLaOrgtN-sdJbaxgazcnG65BxF1bgQRQiv8Bn_WeeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926497921</pqid></control><display><type>article</type><title>Feature Extraction for Change-Point Detection Using Stationary Subspace Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Blythe, D. A. J. ; von Bunau, P. ; Meinecke, F. C. ; Muller, K-R</creator><creatorcontrib>Blythe, D. A. J. ; von Bunau, P. ; Meinecke, F. C. ; Muller, K-R</creatorcontrib><description>Detecting changes in high-dimensional time series is difficult because it involves the comparison of probability densities that need to be estimated from finite samples. In this paper, we present the first feature extraction method tailored to change-point detection, which is based on an extended version of stationary subspace analysis. We reduce the dimensionality of the data to the most nonstationary directions, which are most informative for detecting state changes in the time series. In extensive simulations on synthetic data, we show that the accuracy of three change-point detection algorithms is significantly increased by a prior feature extraction step. These findings are confirmed in an application to industrial fault monitoring.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2012.2185811</identifier><identifier>PMID: 24805046</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Accuracy ; Applied sciences ; Change-point detection ; Computer science; control theory; systems ; Computer simulation ; Control theory. Systems ; Covariance matrix ; Data models ; Density ; Detection algorithms ; Exact sciences and technology ; Feature extraction ; high-dimensional data ; Inference from stochastic processes; time series analysis ; Mathematical analysis ; Mathematics ; Modelling and identification ; Monitoring ; Neural networks ; Probability and statistics ; Sciences and techniques of general use ; segmentation ; stationarity ; Statistics ; Subspaces ; Time series ; Time series analysis</subject><ispartof>IEEE transaction on neural networks and learning systems, 2012-04, Vol.23 (4), p.631-643</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2012</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-1fa0a344bc7fc685c9eed649ba7fcd7b99b18d431260315917749c50ab36b0b93</citedby><cites>FETCH-LOGICAL-c479t-1fa0a344bc7fc685c9eed649ba7fcd7b99b18d431260315917749c50ab36b0b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6151166$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6151166$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25789420$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24805046$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Blythe, D. A. J.</creatorcontrib><creatorcontrib>von Bunau, P.</creatorcontrib><creatorcontrib>Meinecke, F. C.</creatorcontrib><creatorcontrib>Muller, K-R</creatorcontrib><title>Feature Extraction for Change-Point Detection Using Stationary Subspace Analysis</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Detecting changes in high-dimensional time series is difficult because it involves the comparison of probability densities that need to be estimated from finite samples. In this paper, we present the first feature extraction method tailored to change-point detection, which is based on an extended version of stationary subspace analysis. We reduce the dimensionality of the data to the most nonstationary directions, which are most informative for detecting state changes in the time series. In extensive simulations on synthetic data, we show that the accuracy of three change-point detection algorithms is significantly increased by a prior feature extraction step. These findings are confirmed in an application to industrial fault monitoring.</description><subject>Accuracy</subject><subject>Applied sciences</subject><subject>Change-point detection</subject><subject>Computer science; control theory; systems</subject><subject>Computer simulation</subject><subject>Control theory. Systems</subject><subject>Covariance matrix</subject><subject>Data models</subject><subject>Density</subject><subject>Detection algorithms</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>high-dimensional data</subject><subject>Inference from stochastic processes; time series analysis</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Modelling and identification</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>segmentation</subject><subject>stationarity</subject><subject>Statistics</subject><subject>Subspaces</subject><subject>Time series</subject><subject>Time series analysis</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkV9LHDEUxUNRqli_QIUyCEJfZs3N_zzKqm1hUWEVfBuS7B0dmZ3ZJjOg375Zd7uFvpiX5HJ_93BPDiFfgU4AqD2_v7mZzSeMApswMNIAfCKHDBQrGTdmb_fWjwfkOKUXmo-iUgn7mRwwYaikQh2Su2t0wxixuHodogtD03dF3cdi-uy6Jyzv-qYbiksccNN6SE33VMwHt65cfCvmo08rF7C46Fz7lpr0hezXrk14vL2PyMP11f30Zzm7_fFrejErg9B2KKF21HEhfNB1UEYGi7jIy3mX64X21nowC8GBKcpBWtBa2CCp81x56i0_It83uqvY_x4xDdWySQHb1nXYj6kCybjIfg39GKVgldAcdEZP_0Nf-jFma6myLK-nLYMMsQ0UYp9SxLpaxWaZfyMrVetwqvdwqnU41TacPPRtqzz6JS52I3-jyMDZFnApuLaOrgtN-sdJbaxgazcnG65BxF1bgQRQiv8Bn_WeeQ</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Blythe, D. A. J.</creator><creator>von Bunau, P.</creator><creator>Meinecke, F. C.</creator><creator>Muller, K-R</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20120401</creationdate><title>Feature Extraction for Change-Point Detection Using Stationary Subspace Analysis</title><author>Blythe, D. A. J. ; von Bunau, P. ; Meinecke, F. C. ; Muller, K-R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-1fa0a344bc7fc685c9eed649ba7fcd7b99b18d431260315917749c50ab36b0b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Applied sciences</topic><topic>Change-point detection</topic><topic>Computer science; control theory; systems</topic><topic>Computer simulation</topic><topic>Control theory. Systems</topic><topic>Covariance matrix</topic><topic>Data models</topic><topic>Density</topic><topic>Detection algorithms</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>high-dimensional data</topic><topic>Inference from stochastic processes; time series analysis</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Modelling and identification</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>segmentation</topic><topic>stationarity</topic><topic>Statistics</topic><topic>Subspaces</topic><topic>Time series</topic><topic>Time series analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Blythe, D. A. J.</creatorcontrib><creatorcontrib>von Bunau, P.</creatorcontrib><creatorcontrib>Meinecke, F. C.</creatorcontrib><creatorcontrib>Muller, K-R</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Blythe, D. A. J.</au><au>von Bunau, P.</au><au>Meinecke, F. C.</au><au>Muller, K-R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature Extraction for Change-Point Detection Using Stationary Subspace Analysis</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2012-04-01</date><risdate>2012</risdate><volume>23</volume><issue>4</issue><spage>631</spage><epage>643</epage><pages>631-643</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Detecting changes in high-dimensional time series is difficult because it involves the comparison of probability densities that need to be estimated from finite samples. In this paper, we present the first feature extraction method tailored to change-point detection, which is based on an extended version of stationary subspace analysis. We reduce the dimensionality of the data to the most nonstationary directions, which are most informative for detecting state changes in the time series. In extensive simulations on synthetic data, we show that the accuracy of three change-point detection algorithms is significantly increased by a prior feature extraction step. These findings are confirmed in an application to industrial fault monitoring.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>24805046</pmid><doi>10.1109/TNNLS.2012.2185811</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2012-04, Vol.23 (4), p.631-643 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_proquest_miscellaneous_1019647317 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Applied sciences Change-point detection Computer science control theory systems Computer simulation Control theory. Systems Covariance matrix Data models Density Detection algorithms Exact sciences and technology Feature extraction high-dimensional data Inference from stochastic processes time series analysis Mathematical analysis Mathematics Modelling and identification Monitoring Neural networks Probability and statistics Sciences and techniques of general use segmentation stationarity Statistics Subspaces Time series Time series analysis |
title | Feature Extraction for Change-Point Detection Using Stationary Subspace Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A27%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20Extraction%20for%20Change-Point%20Detection%20Using%20Stationary%20Subspace%20Analysis&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Blythe,%20D.%20A.%20J.&rft.date=2012-04-01&rft.volume=23&rft.issue=4&rft.spage=631&rft.epage=643&rft.pages=631-643&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2012.2185811&rft_dat=%3Cproquest_RIE%3E1523405680%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926497921&rft_id=info:pmid/24805046&rft_ieee_id=6151166&rfr_iscdi=true |