Probabilistic models and uncertainty quantification for the ionization reaction rate of atomic Nitrogen

The objective in this paper is to analyze some stochastic models for estimating the ionization reaction rate constant of atomic Nitrogen (N+e−→N++2e−). Parameters of the models are identified by means of Bayesian inference using spatially resolved absolute radiance data obtained from the Electric Ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2012-05, Vol.231 (9), p.3871-3886
Hauptverfasser: Miki, K., Panesi, M., Prudencio, E.E., Prudhomme, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3886
container_issue 9
container_start_page 3871
container_title Journal of computational physics
container_volume 231
creator Miki, K.
Panesi, M.
Prudencio, E.E.
Prudhomme, S.
description The objective in this paper is to analyze some stochastic models for estimating the ionization reaction rate constant of atomic Nitrogen (N+e−→N++2e−). Parameters of the models are identified by means of Bayesian inference using spatially resolved absolute radiance data obtained from the Electric Arc Shock Tube (EAST) wind-tunnel. The proposed methodology accounts for uncertainties in the model parameters as well as physical model inadequacies, providing estimates of the rate constant that reflect both types of uncertainties. We present four different probabilistic models by varying the error structure (either additive or multiplicative) and by choosing different descriptions of the statistical correlation among data points. In order to assess the validity of our methodology, we first present some calibration results obtained with manufactured data and then proceed by using experimental data collected at EAST experimental facility. In order to simulate the radiative signature emitted in the shock-heated air plasma, we use a one-dimensional flow solver with Park’s two-temperature model that simulates non-equilibrium effects. We also discuss the implications of the choice of the stochastic model on the estimation of the reaction rate and its uncertainties. Our analysis shows that the stochastic models based on correlated multiplicative errors are the most plausible models among the four models proposed in this study. The rate of the atomic Nitrogen ionization is found to be (6.2±3.3)×1011cm3mol−1s−1 at 10,000K.
doi_str_mv 10.1016/j.jcp.2012.01.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019646557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999112000265</els_id><sourcerecordid>1019646557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-6c56ca24e4556971d803861025bf48f0ff841a448d75b37c8aa3e1b673dc906a3</originalsourceid><addsrcrecordid>eNp9kMFq3DAQhkVoINtNHiA3XQq92BnZlmzTUwlNEwhtD8lZjOVRIuO1diVtIXn6Kjjk2NMMw_f_Ax9jlwJKAUJdTeVk9mUFoipBlADyhG0E9FBUrVCf2AagEkXf9-KMfY5xAoBONt2GPf0JfsDBzS4mZ_jOjzRHjsvIj4uhkNAt6YUfjrgkZ53B5PzCrQ88PRPPu3tdT4HQrAsm4t5yTH6XC3-5FPwTLefs1OIc6eJ9btnjzY-H69vi_vfPu-vv94WpFaRCGakMVg01Uqq-FWMHdacEVHKwTWfB2q4R2DTd2Mqhbk2HWJMYVFuPpgeF9ZZ9XXv3wR-OFJPeuWhonnEhf4w6y-pVo6RsMypW1AQfYyCr98HtMLxk6I1TetJZqn6TqkHoLDVnvrzXYzQ424CLcfEjWEklK9VD5r6tXLZJfx0FHY2jbHR0gUzSo3f_-fIPlRiNiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019646557</pqid></control><display><type>article</type><title>Probabilistic models and uncertainty quantification for the ionization reaction rate of atomic Nitrogen</title><source>Access via ScienceDirect (Elsevier)</source><creator>Miki, K. ; Panesi, M. ; Prudencio, E.E. ; Prudhomme, S.</creator><creatorcontrib>Miki, K. ; Panesi, M. ; Prudencio, E.E. ; Prudhomme, S.</creatorcontrib><description>The objective in this paper is to analyze some stochastic models for estimating the ionization reaction rate constant of atomic Nitrogen (N+e−→N++2e−). Parameters of the models are identified by means of Bayesian inference using spatially resolved absolute radiance data obtained from the Electric Arc Shock Tube (EAST) wind-tunnel. The proposed methodology accounts for uncertainties in the model parameters as well as physical model inadequacies, providing estimates of the rate constant that reflect both types of uncertainties. We present four different probabilistic models by varying the error structure (either additive or multiplicative) and by choosing different descriptions of the statistical correlation among data points. In order to assess the validity of our methodology, we first present some calibration results obtained with manufactured data and then proceed by using experimental data collected at EAST experimental facility. In order to simulate the radiative signature emitted in the shock-heated air plasma, we use a one-dimensional flow solver with Park’s two-temperature model that simulates non-equilibrium effects. We also discuss the implications of the choice of the stochastic model on the estimation of the reaction rate and its uncertainties. Our analysis shows that the stochastic models based on correlated multiplicative errors are the most plausible models among the four models proposed in this study. The rate of the atomic Nitrogen ionization is found to be (6.2±3.3)×1011cm3mol−1s−1 at 10,000K.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2012.01.005</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Bayesian method ; Computational techniques ; Computer simulation ; Covariance matrix ; Exact sciences and technology ; Inverse problem ; Ionization ; Mathematical methods in physics ; Mathematical models ; Methodology ; Nitrogen ionization ; Parameter identification ; Physics ; Probability theory ; Rate constants ; Stochastic modeling ; Stochasticity ; Uncertainty</subject><ispartof>Journal of computational physics, 2012-05, Vol.231 (9), p.3871-3886</ispartof><rights>2012 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-6c56ca24e4556971d803861025bf48f0ff841a448d75b37c8aa3e1b673dc906a3</citedby><cites>FETCH-LOGICAL-c360t-6c56ca24e4556971d803861025bf48f0ff841a448d75b37c8aa3e1b673dc906a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2012.01.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25652690$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Miki, K.</creatorcontrib><creatorcontrib>Panesi, M.</creatorcontrib><creatorcontrib>Prudencio, E.E.</creatorcontrib><creatorcontrib>Prudhomme, S.</creatorcontrib><title>Probabilistic models and uncertainty quantification for the ionization reaction rate of atomic Nitrogen</title><title>Journal of computational physics</title><description>The objective in this paper is to analyze some stochastic models for estimating the ionization reaction rate constant of atomic Nitrogen (N+e−→N++2e−). Parameters of the models are identified by means of Bayesian inference using spatially resolved absolute radiance data obtained from the Electric Arc Shock Tube (EAST) wind-tunnel. The proposed methodology accounts for uncertainties in the model parameters as well as physical model inadequacies, providing estimates of the rate constant that reflect both types of uncertainties. We present four different probabilistic models by varying the error structure (either additive or multiplicative) and by choosing different descriptions of the statistical correlation among data points. In order to assess the validity of our methodology, we first present some calibration results obtained with manufactured data and then proceed by using experimental data collected at EAST experimental facility. In order to simulate the radiative signature emitted in the shock-heated air plasma, we use a one-dimensional flow solver with Park’s two-temperature model that simulates non-equilibrium effects. We also discuss the implications of the choice of the stochastic model on the estimation of the reaction rate and its uncertainties. Our analysis shows that the stochastic models based on correlated multiplicative errors are the most plausible models among the four models proposed in this study. The rate of the atomic Nitrogen ionization is found to be (6.2±3.3)×1011cm3mol−1s−1 at 10,000K.</description><subject>Bayesian method</subject><subject>Computational techniques</subject><subject>Computer simulation</subject><subject>Covariance matrix</subject><subject>Exact sciences and technology</subject><subject>Inverse problem</subject><subject>Ionization</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Nitrogen ionization</subject><subject>Parameter identification</subject><subject>Physics</subject><subject>Probability theory</subject><subject>Rate constants</subject><subject>Stochastic modeling</subject><subject>Stochasticity</subject><subject>Uncertainty</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kMFq3DAQhkVoINtNHiA3XQq92BnZlmzTUwlNEwhtD8lZjOVRIuO1diVtIXn6Kjjk2NMMw_f_Ax9jlwJKAUJdTeVk9mUFoipBlADyhG0E9FBUrVCf2AagEkXf9-KMfY5xAoBONt2GPf0JfsDBzS4mZ_jOjzRHjsvIj4uhkNAt6YUfjrgkZ53B5PzCrQ88PRPPu3tdT4HQrAsm4t5yTH6XC3-5FPwTLefs1OIc6eJ9btnjzY-H69vi_vfPu-vv94WpFaRCGakMVg01Uqq-FWMHdacEVHKwTWfB2q4R2DTd2Mqhbk2HWJMYVFuPpgeF9ZZ9XXv3wR-OFJPeuWhonnEhf4w6y-pVo6RsMypW1AQfYyCr98HtMLxk6I1TetJZqn6TqkHoLDVnvrzXYzQ424CLcfEjWEklK9VD5r6tXLZJfx0FHY2jbHR0gUzSo3f_-fIPlRiNiQ</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Miki, K.</creator><creator>Panesi, M.</creator><creator>Prudencio, E.E.</creator><creator>Prudhomme, S.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120501</creationdate><title>Probabilistic models and uncertainty quantification for the ionization reaction rate of atomic Nitrogen</title><author>Miki, K. ; Panesi, M. ; Prudencio, E.E. ; Prudhomme, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-6c56ca24e4556971d803861025bf48f0ff841a448d75b37c8aa3e1b673dc906a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bayesian method</topic><topic>Computational techniques</topic><topic>Computer simulation</topic><topic>Covariance matrix</topic><topic>Exact sciences and technology</topic><topic>Inverse problem</topic><topic>Ionization</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Nitrogen ionization</topic><topic>Parameter identification</topic><topic>Physics</topic><topic>Probability theory</topic><topic>Rate constants</topic><topic>Stochastic modeling</topic><topic>Stochasticity</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miki, K.</creatorcontrib><creatorcontrib>Panesi, M.</creatorcontrib><creatorcontrib>Prudencio, E.E.</creatorcontrib><creatorcontrib>Prudhomme, S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miki, K.</au><au>Panesi, M.</au><au>Prudencio, E.E.</au><au>Prudhomme, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic models and uncertainty quantification for the ionization reaction rate of atomic Nitrogen</atitle><jtitle>Journal of computational physics</jtitle><date>2012-05-01</date><risdate>2012</risdate><volume>231</volume><issue>9</issue><spage>3871</spage><epage>3886</epage><pages>3871-3886</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>The objective in this paper is to analyze some stochastic models for estimating the ionization reaction rate constant of atomic Nitrogen (N+e−→N++2e−). Parameters of the models are identified by means of Bayesian inference using spatially resolved absolute radiance data obtained from the Electric Arc Shock Tube (EAST) wind-tunnel. The proposed methodology accounts for uncertainties in the model parameters as well as physical model inadequacies, providing estimates of the rate constant that reflect both types of uncertainties. We present four different probabilistic models by varying the error structure (either additive or multiplicative) and by choosing different descriptions of the statistical correlation among data points. In order to assess the validity of our methodology, we first present some calibration results obtained with manufactured data and then proceed by using experimental data collected at EAST experimental facility. In order to simulate the radiative signature emitted in the shock-heated air plasma, we use a one-dimensional flow solver with Park’s two-temperature model that simulates non-equilibrium effects. We also discuss the implications of the choice of the stochastic model on the estimation of the reaction rate and its uncertainties. Our analysis shows that the stochastic models based on correlated multiplicative errors are the most plausible models among the four models proposed in this study. The rate of the atomic Nitrogen ionization is found to be (6.2±3.3)×1011cm3mol−1s−1 at 10,000K.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2012.01.005</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2012-05, Vol.231 (9), p.3871-3886
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_1019646557
source Access via ScienceDirect (Elsevier)
subjects Bayesian method
Computational techniques
Computer simulation
Covariance matrix
Exact sciences and technology
Inverse problem
Ionization
Mathematical methods in physics
Mathematical models
Methodology
Nitrogen ionization
Parameter identification
Physics
Probability theory
Rate constants
Stochastic modeling
Stochasticity
Uncertainty
title Probabilistic models and uncertainty quantification for the ionization reaction rate of atomic Nitrogen
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A07%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20models%20and%20uncertainty%20quantification%20for%20the%20ionization%20reaction%20rate%20of%20atomic%20Nitrogen&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Miki,%20K.&rft.date=2012-05-01&rft.volume=231&rft.issue=9&rft.spage=3871&rft.epage=3886&rft.pages=3871-3886&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2012.01.005&rft_dat=%3Cproquest_cross%3E1019646557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019646557&rft_id=info:pmid/&rft_els_id=S0021999112000265&rfr_iscdi=true