A Probabilistic Analysis of a Simplified Biogeography-Based Optimization Algorithm
Biogeography-based optimization (BBO) is a population-based evolutionary algorithm (EA) that is based on the mathematics of biogeography. Biogeography is the study of the geographical distribution of biological organisms. We present a simplified version of BBO and perform an approximate analysis of...
Gespeichert in:
Veröffentlicht in: | Evolutionary computation 2011-06, Vol.19 (2), p.167-188 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 188 |
---|---|
container_issue | 2 |
container_start_page | 167 |
container_title | Evolutionary computation |
container_volume | 19 |
creator | Simon, Dan |
description | Biogeography-based optimization (BBO) is a population-based evolutionary algorithm (EA) that is based on the mathematics of biogeography. Biogeography is the study of the geographical distribution of biological organisms. We present a simplified version of BBO and perform an approximate analysis of the BBO population using probability theory. Our analysis provides approximate values for the expected number of generations before the population's best solution improves, and the expected amount of improvement. These expected values are functions of the population size. We quantify three behaviors as the population size increases: first, we see that the best solution in the initial randomly generated population improves; second, we see that the expected number of generations before improvement increases; and third, we see that the expected amount of improvement decreases. |
doi_str_mv | 10.1162/EVCO_a_00018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_mit_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019645898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1019645898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-4799efe09b52f420023ea3f721bd7e74efa93fff3221eb7e70b8c8f56bc9e5513</originalsourceid><addsrcrecordid>eNp9kDtPwzAURi0EoqWwMaNsMBC4tuPEGduqPKRKRbzWyE7t1lVSBzsZyq_HqOUxIIare_Xp6LvSQegUwxXGKbmevI5nhSgAAPM91MeMQpxTSPbDDSmNU5ZCDx15vwoEJYAPUY8Ahwwy3kePw-jBWSmkqYxvTRkN16LaeOMjqyMRPZm6qYw2ah6NjF0ou3CiWW7ikfAhmjWtqc27aI1dR8NqYZ1pl_UxOtCi8upktwfo5WbyPL6Lp7Pb-_FwGpeUpW2cZHmutIJcMqITAkCoElRnBMt5prJEaZFTrTUlBCsZEpC85JqlsswVY5gO0Pm2t3H2rVO-LWrjS1VVYq1s5wueMhwmyQJ58S-JAedpwnjOA3q5RUtnvXdKF40ztXCbABWfvovfvgN-tmvuZK3m3_CX4J_XtWmLle1c0Ov_7voA6HSIMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019645898</pqid></control><display><type>article</type><title>A Probabilistic Analysis of a Simplified Biogeography-Based Optimization Algorithm</title><source>MEDLINE</source><source>ACM Digital Library Complete</source><creator>Simon, Dan</creator><creatorcontrib>Simon, Dan</creatorcontrib><description>Biogeography-based optimization (BBO) is a population-based evolutionary algorithm (EA) that is based on the mathematics of biogeography. Biogeography is the study of the geographical distribution of biological organisms. We present a simplified version of BBO and perform an approximate analysis of the BBO population using probability theory. Our analysis provides approximate values for the expected number of generations before the population's best solution improves, and the expected amount of improvement. These expected values are functions of the population size. We quantify three behaviors as the population size increases: first, we see that the best solution in the initial randomly generated population improves; second, we see that the expected number of generations before improvement increases; and third, we see that the expected amount of improvement decreases.</description><identifier>ISSN: 1063-6560</identifier><identifier>EISSN: 1530-9304</identifier><identifier>DOI: 10.1162/EVCO_a_00018</identifier><identifier>PMID: 20807078</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Algorithms ; Approximation ; Biogeography-based optimization ; Computer Simulation ; Ecosystem ; Emigration and Immigration ; Evolutionary algorithms ; Genetics, Population ; Markov analysis ; Markov Chains ; Mathematical analysis ; Mathematical models ; Models, Biological ; Optimization ; Organisms ; Probabilistic analysis</subject><ispartof>Evolutionary computation, 2011-06, Vol.19 (2), p.167-188</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-4799efe09b52f420023ea3f721bd7e74efa93fff3221eb7e70b8c8f56bc9e5513</citedby><cites>FETCH-LOGICAL-c356t-4799efe09b52f420023ea3f721bd7e74efa93fff3221eb7e70b8c8f56bc9e5513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20807078$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Simon, Dan</creatorcontrib><title>A Probabilistic Analysis of a Simplified Biogeography-Based Optimization Algorithm</title><title>Evolutionary computation</title><addtitle>Evol Comput</addtitle><description>Biogeography-based optimization (BBO) is a population-based evolutionary algorithm (EA) that is based on the mathematics of biogeography. Biogeography is the study of the geographical distribution of biological organisms. We present a simplified version of BBO and perform an approximate analysis of the BBO population using probability theory. Our analysis provides approximate values for the expected number of generations before the population's best solution improves, and the expected amount of improvement. These expected values are functions of the population size. We quantify three behaviors as the population size increases: first, we see that the best solution in the initial randomly generated population improves; second, we see that the expected number of generations before improvement increases; and third, we see that the expected amount of improvement decreases.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Biogeography-based optimization</subject><subject>Computer Simulation</subject><subject>Ecosystem</subject><subject>Emigration and Immigration</subject><subject>Evolutionary algorithms</subject><subject>Genetics, Population</subject><subject>Markov analysis</subject><subject>Markov Chains</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Optimization</subject><subject>Organisms</subject><subject>Probabilistic analysis</subject><issn>1063-6560</issn><issn>1530-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kDtPwzAURi0EoqWwMaNsMBC4tuPEGduqPKRKRbzWyE7t1lVSBzsZyq_HqOUxIIare_Xp6LvSQegUwxXGKbmevI5nhSgAAPM91MeMQpxTSPbDDSmNU5ZCDx15vwoEJYAPUY8Ahwwy3kePw-jBWSmkqYxvTRkN16LaeOMjqyMRPZm6qYw2ah6NjF0ou3CiWW7ikfAhmjWtqc27aI1dR8NqYZ1pl_UxOtCi8upktwfo5WbyPL6Lp7Pb-_FwGpeUpW2cZHmutIJcMqITAkCoElRnBMt5prJEaZFTrTUlBCsZEpC85JqlsswVY5gO0Pm2t3H2rVO-LWrjS1VVYq1s5wueMhwmyQJ58S-JAedpwnjOA3q5RUtnvXdKF40ztXCbABWfvovfvgN-tmvuZK3m3_CX4J_XtWmLle1c0Ov_7voA6HSIMw</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Simon, Dan</creator><general>MIT Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20110601</creationdate><title>A Probabilistic Analysis of a Simplified Biogeography-Based Optimization Algorithm</title><author>Simon, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-4799efe09b52f420023ea3f721bd7e74efa93fff3221eb7e70b8c8f56bc9e5513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Biogeography-based optimization</topic><topic>Computer Simulation</topic><topic>Ecosystem</topic><topic>Emigration and Immigration</topic><topic>Evolutionary algorithms</topic><topic>Genetics, Population</topic><topic>Markov analysis</topic><topic>Markov Chains</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Optimization</topic><topic>Organisms</topic><topic>Probabilistic analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simon, Dan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simon, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Probabilistic Analysis of a Simplified Biogeography-Based Optimization Algorithm</atitle><jtitle>Evolutionary computation</jtitle><addtitle>Evol Comput</addtitle><date>2011-06-01</date><risdate>2011</risdate><volume>19</volume><issue>2</issue><spage>167</spage><epage>188</epage><pages>167-188</pages><issn>1063-6560</issn><eissn>1530-9304</eissn><abstract>Biogeography-based optimization (BBO) is a population-based evolutionary algorithm (EA) that is based on the mathematics of biogeography. Biogeography is the study of the geographical distribution of biological organisms. We present a simplified version of BBO and perform an approximate analysis of the BBO population using probability theory. Our analysis provides approximate values for the expected number of generations before the population's best solution improves, and the expected amount of improvement. These expected values are functions of the population size. We quantify three behaviors as the population size increases: first, we see that the best solution in the initial randomly generated population improves; second, we see that the expected number of generations before improvement increases; and third, we see that the expected amount of improvement decreases.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>20807078</pmid><doi>10.1162/EVCO_a_00018</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-6560 |
ispartof | Evolutionary computation, 2011-06, Vol.19 (2), p.167-188 |
issn | 1063-6560 1530-9304 |
language | eng |
recordid | cdi_proquest_miscellaneous_1019645898 |
source | MEDLINE; ACM Digital Library Complete |
subjects | Algorithms Approximation Biogeography-based optimization Computer Simulation Ecosystem Emigration and Immigration Evolutionary algorithms Genetics, Population Markov analysis Markov Chains Mathematical analysis Mathematical models Models, Biological Optimization Organisms Probabilistic analysis |
title | A Probabilistic Analysis of a Simplified Biogeography-Based Optimization Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A50%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_mit_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Probabilistic%20Analysis%20of%20a%20Simplified%20Biogeography-Based%20Optimization%20Algorithm&rft.jtitle=Evolutionary%20computation&rft.au=Simon,%20Dan&rft.date=2011-06-01&rft.volume=19&rft.issue=2&rft.spage=167&rft.epage=188&rft.pages=167-188&rft.issn=1063-6560&rft.eissn=1530-9304&rft_id=info:doi/10.1162/EVCO_a_00018&rft_dat=%3Cproquest_mit_j%3E1019645898%3C/proquest_mit_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019645898&rft_id=info:pmid/20807078&rfr_iscdi=true |