A Probabilistic Analysis of a Simplified Biogeography-Based Optimization Algorithm

Biogeography-based optimization (BBO) is a population-based evolutionary algorithm (EA) that is based on the mathematics of biogeography. Biogeography is the study of the geographical distribution of biological organisms. We present a simplified version of BBO and perform an approximate analysis of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolutionary computation 2011-06, Vol.19 (2), p.167-188
1. Verfasser: Simon, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 188
container_issue 2
container_start_page 167
container_title Evolutionary computation
container_volume 19
creator Simon, Dan
description Biogeography-based optimization (BBO) is a population-based evolutionary algorithm (EA) that is based on the mathematics of biogeography. Biogeography is the study of the geographical distribution of biological organisms. We present a simplified version of BBO and perform an approximate analysis of the BBO population using probability theory. Our analysis provides approximate values for the expected number of generations before the population's best solution improves, and the expected amount of improvement. These expected values are functions of the population size. We quantify three behaviors as the population size increases: first, we see that the best solution in the initial randomly generated population improves; second, we see that the expected number of generations before improvement increases; and third, we see that the expected amount of improvement decreases.
doi_str_mv 10.1162/EVCO_a_00018
format Article
fullrecord <record><control><sourceid>proquest_mit_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019645898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1019645898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-4799efe09b52f420023ea3f721bd7e74efa93fff3221eb7e70b8c8f56bc9e5513</originalsourceid><addsrcrecordid>eNp9kDtPwzAURi0EoqWwMaNsMBC4tuPEGduqPKRKRbzWyE7t1lVSBzsZyq_HqOUxIIare_Xp6LvSQegUwxXGKbmevI5nhSgAAPM91MeMQpxTSPbDDSmNU5ZCDx15vwoEJYAPUY8Ahwwy3kePw-jBWSmkqYxvTRkN16LaeOMjqyMRPZm6qYw2ah6NjF0ou3CiWW7ikfAhmjWtqc27aI1dR8NqYZ1pl_UxOtCi8upktwfo5WbyPL6Lp7Pb-_FwGpeUpW2cZHmutIJcMqITAkCoElRnBMt5prJEaZFTrTUlBCsZEpC85JqlsswVY5gO0Pm2t3H2rVO-LWrjS1VVYq1s5wueMhwmyQJ58S-JAedpwnjOA3q5RUtnvXdKF40ztXCbABWfvovfvgN-tmvuZK3m3_CX4J_XtWmLle1c0Ov_7voA6HSIMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019645898</pqid></control><display><type>article</type><title>A Probabilistic Analysis of a Simplified Biogeography-Based Optimization Algorithm</title><source>MEDLINE</source><source>ACM Digital Library Complete</source><creator>Simon, Dan</creator><creatorcontrib>Simon, Dan</creatorcontrib><description>Biogeography-based optimization (BBO) is a population-based evolutionary algorithm (EA) that is based on the mathematics of biogeography. Biogeography is the study of the geographical distribution of biological organisms. We present a simplified version of BBO and perform an approximate analysis of the BBO population using probability theory. Our analysis provides approximate values for the expected number of generations before the population's best solution improves, and the expected amount of improvement. These expected values are functions of the population size. We quantify three behaviors as the population size increases: first, we see that the best solution in the initial randomly generated population improves; second, we see that the expected number of generations before improvement increases; and third, we see that the expected amount of improvement decreases.</description><identifier>ISSN: 1063-6560</identifier><identifier>EISSN: 1530-9304</identifier><identifier>DOI: 10.1162/EVCO_a_00018</identifier><identifier>PMID: 20807078</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Algorithms ; Approximation ; Biogeography-based optimization ; Computer Simulation ; Ecosystem ; Emigration and Immigration ; Evolutionary algorithms ; Genetics, Population ; Markov analysis ; Markov Chains ; Mathematical analysis ; Mathematical models ; Models, Biological ; Optimization ; Organisms ; Probabilistic analysis</subject><ispartof>Evolutionary computation, 2011-06, Vol.19 (2), p.167-188</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-4799efe09b52f420023ea3f721bd7e74efa93fff3221eb7e70b8c8f56bc9e5513</citedby><cites>FETCH-LOGICAL-c356t-4799efe09b52f420023ea3f721bd7e74efa93fff3221eb7e70b8c8f56bc9e5513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20807078$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Simon, Dan</creatorcontrib><title>A Probabilistic Analysis of a Simplified Biogeography-Based Optimization Algorithm</title><title>Evolutionary computation</title><addtitle>Evol Comput</addtitle><description>Biogeography-based optimization (BBO) is a population-based evolutionary algorithm (EA) that is based on the mathematics of biogeography. Biogeography is the study of the geographical distribution of biological organisms. We present a simplified version of BBO and perform an approximate analysis of the BBO population using probability theory. Our analysis provides approximate values for the expected number of generations before the population's best solution improves, and the expected amount of improvement. These expected values are functions of the population size. We quantify three behaviors as the population size increases: first, we see that the best solution in the initial randomly generated population improves; second, we see that the expected number of generations before improvement increases; and third, we see that the expected amount of improvement decreases.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Biogeography-based optimization</subject><subject>Computer Simulation</subject><subject>Ecosystem</subject><subject>Emigration and Immigration</subject><subject>Evolutionary algorithms</subject><subject>Genetics, Population</subject><subject>Markov analysis</subject><subject>Markov Chains</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Optimization</subject><subject>Organisms</subject><subject>Probabilistic analysis</subject><issn>1063-6560</issn><issn>1530-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kDtPwzAURi0EoqWwMaNsMBC4tuPEGduqPKRKRbzWyE7t1lVSBzsZyq_HqOUxIIare_Xp6LvSQegUwxXGKbmevI5nhSgAAPM91MeMQpxTSPbDDSmNU5ZCDx15vwoEJYAPUY8Ahwwy3kePw-jBWSmkqYxvTRkN16LaeOMjqyMRPZm6qYw2ah6NjF0ou3CiWW7ikfAhmjWtqc27aI1dR8NqYZ1pl_UxOtCi8upktwfo5WbyPL6Lp7Pb-_FwGpeUpW2cZHmutIJcMqITAkCoElRnBMt5prJEaZFTrTUlBCsZEpC85JqlsswVY5gO0Pm2t3H2rVO-LWrjS1VVYq1s5wueMhwmyQJ58S-JAedpwnjOA3q5RUtnvXdKF40ztXCbABWfvovfvgN-tmvuZK3m3_CX4J_XtWmLle1c0Ov_7voA6HSIMw</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Simon, Dan</creator><general>MIT Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20110601</creationdate><title>A Probabilistic Analysis of a Simplified Biogeography-Based Optimization Algorithm</title><author>Simon, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-4799efe09b52f420023ea3f721bd7e74efa93fff3221eb7e70b8c8f56bc9e5513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Biogeography-based optimization</topic><topic>Computer Simulation</topic><topic>Ecosystem</topic><topic>Emigration and Immigration</topic><topic>Evolutionary algorithms</topic><topic>Genetics, Population</topic><topic>Markov analysis</topic><topic>Markov Chains</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Optimization</topic><topic>Organisms</topic><topic>Probabilistic analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simon, Dan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simon, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Probabilistic Analysis of a Simplified Biogeography-Based Optimization Algorithm</atitle><jtitle>Evolutionary computation</jtitle><addtitle>Evol Comput</addtitle><date>2011-06-01</date><risdate>2011</risdate><volume>19</volume><issue>2</issue><spage>167</spage><epage>188</epage><pages>167-188</pages><issn>1063-6560</issn><eissn>1530-9304</eissn><abstract>Biogeography-based optimization (BBO) is a population-based evolutionary algorithm (EA) that is based on the mathematics of biogeography. Biogeography is the study of the geographical distribution of biological organisms. We present a simplified version of BBO and perform an approximate analysis of the BBO population using probability theory. Our analysis provides approximate values for the expected number of generations before the population's best solution improves, and the expected amount of improvement. These expected values are functions of the population size. We quantify three behaviors as the population size increases: first, we see that the best solution in the initial randomly generated population improves; second, we see that the expected number of generations before improvement increases; and third, we see that the expected amount of improvement decreases.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>20807078</pmid><doi>10.1162/EVCO_a_00018</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1063-6560
ispartof Evolutionary computation, 2011-06, Vol.19 (2), p.167-188
issn 1063-6560
1530-9304
language eng
recordid cdi_proquest_miscellaneous_1019645898
source MEDLINE; ACM Digital Library Complete
subjects Algorithms
Approximation
Biogeography-based optimization
Computer Simulation
Ecosystem
Emigration and Immigration
Evolutionary algorithms
Genetics, Population
Markov analysis
Markov Chains
Mathematical analysis
Mathematical models
Models, Biological
Optimization
Organisms
Probabilistic analysis
title A Probabilistic Analysis of a Simplified Biogeography-Based Optimization Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A50%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_mit_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Probabilistic%20Analysis%20of%20a%20Simplified%20Biogeography-Based%20Optimization%20Algorithm&rft.jtitle=Evolutionary%20computation&rft.au=Simon,%20Dan&rft.date=2011-06-01&rft.volume=19&rft.issue=2&rft.spage=167&rft.epage=188&rft.pages=167-188&rft.issn=1063-6560&rft.eissn=1530-9304&rft_id=info:doi/10.1162/EVCO_a_00018&rft_dat=%3Cproquest_mit_j%3E1019645898%3C/proquest_mit_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019645898&rft_id=info:pmid/20807078&rfr_iscdi=true