Sensitivity analysis of limit cycle oscillations
Many unsteady problems equilibrate to periodic behavior. For these problems the sensitivity of periodic outputs to system parameters are often desired, and must be estimated from a finite time span or frequency domain calculation. Sensitivities computed in the time domain over a finite time span can...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2012-04, Vol.231 (8), p.3228-3245 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3245 |
---|---|
container_issue | 8 |
container_start_page | 3228 |
container_title | Journal of computational physics |
container_volume | 231 |
creator | Krakos, Joshua A. Wang, Qiqi Hall, Steven R. Darmofal, David L. |
description | Many unsteady problems equilibrate to periodic behavior. For these problems the sensitivity of periodic outputs to system parameters are often desired, and must be estimated from a finite time span or frequency domain calculation. Sensitivities computed in the time domain over a finite time span can take excessive time to converge, or fail altogether to converge to the periodic value. Additionally, finite span outputs can exhibit local extrema in parameter space which the periodic outputs they approximate do not, hindering their use in optimization. We derive a theoretical basis for this error and demonstrate it using two examples, a van der Pol oscillator and vortex shedding from a low Reynolds number airfoil. We show that output windowing enables the accurate computation of periodic output sensitivities and may allow for decreased simulation time to compute both time-averaged outputs and sensitivities. We classify two distinct window types: long-time, over a large, not necessarily integer number of periods; and short-time, over a small, integer number of periods. Finally, from these two classes we investigate several examples of window shape and demonstrate their convergence with window size and error in the period approximation, respectively. |
doi_str_mv | 10.1016/j.jcp.2012.01.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019644618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999112000071</els_id><sourcerecordid>1019644618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-4865fc72071fd6ae39b10b825eac0fe89eef19e73486c821233454bcdb639d823</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG-9CF5aZ9I2bfAki1-w4EE9hzSdQEq3XZPuQv-9WXbx6Gkuz_vOzMPYLUKGgOKhyzqzzTggzwAzADxjCwQJKa9QnLMFAMdUSomX7CqEDgDqsqgXDD5pCG5yezfNiR50PwcXktEmvdu4KTGz6SkZg3F9ryc3DuGaXVjdB7o5zSX7fnn-Wr2l64_X99XTOjW5gCktalFaU3Go0LZCUy4bhKbmJWkDlmpJZFFSlUfQ1Bx5nhdl0Zi2Eblsa54v2f2xd-vHnx2FSW1cMBTPGGjcBRW_lqIoBNYRxSNq_BiCJ6u23m20nyN04ITqVLSjDnYUoIp2YubuVK-D0b31ejAu_AV5KUqR8wP3eOQo_rp35FV0QYOh1nkyk2pH98-WX1rBePU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019644618</pqid></control><display><type>article</type><title>Sensitivity analysis of limit cycle oscillations</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Krakos, Joshua A. ; Wang, Qiqi ; Hall, Steven R. ; Darmofal, David L.</creator><creatorcontrib>Krakos, Joshua A. ; Wang, Qiqi ; Hall, Steven R. ; Darmofal, David L.</creatorcontrib><description>Many unsteady problems equilibrate to periodic behavior. For these problems the sensitivity of periodic outputs to system parameters are often desired, and must be estimated from a finite time span or frequency domain calculation. Sensitivities computed in the time domain over a finite time span can take excessive time to converge, or fail altogether to converge to the periodic value. Additionally, finite span outputs can exhibit local extrema in parameter space which the periodic outputs they approximate do not, hindering their use in optimization. We derive a theoretical basis for this error and demonstrate it using two examples, a van der Pol oscillator and vortex shedding from a low Reynolds number airfoil. We show that output windowing enables the accurate computation of periodic output sensitivities and may allow for decreased simulation time to compute both time-averaged outputs and sensitivities. We classify two distinct window types: long-time, over a large, not necessarily integer number of periods; and short-time, over a small, integer number of periods. Finally, from these two classes we investigate several examples of window shape and demonstrate their convergence with window size and error in the period approximation, respectively.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2012.01.001</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Airfoils ; Approximation ; Computation ; Computational techniques ; Exact sciences and technology ; Integers ; Limit cycle oscillations ; Limit cycles ; Low Reynolds number ; Mathematical analysis ; Mathematical methods in physics ; Periodic ; Physics ; Sensitivity analysis ; Unsteady</subject><ispartof>Journal of computational physics, 2012-04, Vol.231 (8), p.3228-3245</ispartof><rights>2012 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-4865fc72071fd6ae39b10b825eac0fe89eef19e73486c821233454bcdb639d823</citedby><cites>FETCH-LOGICAL-c360t-4865fc72071fd6ae39b10b825eac0fe89eef19e73486c821233454bcdb639d823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2012.01.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25656321$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Krakos, Joshua A.</creatorcontrib><creatorcontrib>Wang, Qiqi</creatorcontrib><creatorcontrib>Hall, Steven R.</creatorcontrib><creatorcontrib>Darmofal, David L.</creatorcontrib><title>Sensitivity analysis of limit cycle oscillations</title><title>Journal of computational physics</title><description>Many unsteady problems equilibrate to periodic behavior. For these problems the sensitivity of periodic outputs to system parameters are often desired, and must be estimated from a finite time span or frequency domain calculation. Sensitivities computed in the time domain over a finite time span can take excessive time to converge, or fail altogether to converge to the periodic value. Additionally, finite span outputs can exhibit local extrema in parameter space which the periodic outputs they approximate do not, hindering their use in optimization. We derive a theoretical basis for this error and demonstrate it using two examples, a van der Pol oscillator and vortex shedding from a low Reynolds number airfoil. We show that output windowing enables the accurate computation of periodic output sensitivities and may allow for decreased simulation time to compute both time-averaged outputs and sensitivities. We classify two distinct window types: long-time, over a large, not necessarily integer number of periods; and short-time, over a small, integer number of periods. Finally, from these two classes we investigate several examples of window shape and demonstrate their convergence with window size and error in the period approximation, respectively.</description><subject>Airfoils</subject><subject>Approximation</subject><subject>Computation</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Integers</subject><subject>Limit cycle oscillations</subject><subject>Limit cycles</subject><subject>Low Reynolds number</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Periodic</subject><subject>Physics</subject><subject>Sensitivity analysis</subject><subject>Unsteady</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG-9CF5aZ9I2bfAki1-w4EE9hzSdQEq3XZPuQv-9WXbx6Gkuz_vOzMPYLUKGgOKhyzqzzTggzwAzADxjCwQJKa9QnLMFAMdUSomX7CqEDgDqsqgXDD5pCG5yezfNiR50PwcXktEmvdu4KTGz6SkZg3F9ryc3DuGaXVjdB7o5zSX7fnn-Wr2l64_X99XTOjW5gCktalFaU3Go0LZCUy4bhKbmJWkDlmpJZFFSlUfQ1Bx5nhdl0Zi2Eblsa54v2f2xd-vHnx2FSW1cMBTPGGjcBRW_lqIoBNYRxSNq_BiCJ6u23m20nyN04ITqVLSjDnYUoIp2YubuVK-D0b31ejAu_AV5KUqR8wP3eOQo_rp35FV0QYOh1nkyk2pH98-WX1rBePU</recordid><startdate>20120420</startdate><enddate>20120420</enddate><creator>Krakos, Joshua A.</creator><creator>Wang, Qiqi</creator><creator>Hall, Steven R.</creator><creator>Darmofal, David L.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120420</creationdate><title>Sensitivity analysis of limit cycle oscillations</title><author>Krakos, Joshua A. ; Wang, Qiqi ; Hall, Steven R. ; Darmofal, David L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-4865fc72071fd6ae39b10b825eac0fe89eef19e73486c821233454bcdb639d823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Airfoils</topic><topic>Approximation</topic><topic>Computation</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Integers</topic><topic>Limit cycle oscillations</topic><topic>Limit cycles</topic><topic>Low Reynolds number</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Periodic</topic><topic>Physics</topic><topic>Sensitivity analysis</topic><topic>Unsteady</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krakos, Joshua A.</creatorcontrib><creatorcontrib>Wang, Qiqi</creatorcontrib><creatorcontrib>Hall, Steven R.</creatorcontrib><creatorcontrib>Darmofal, David L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krakos, Joshua A.</au><au>Wang, Qiqi</au><au>Hall, Steven R.</au><au>Darmofal, David L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitivity analysis of limit cycle oscillations</atitle><jtitle>Journal of computational physics</jtitle><date>2012-04-20</date><risdate>2012</risdate><volume>231</volume><issue>8</issue><spage>3228</spage><epage>3245</epage><pages>3228-3245</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>Many unsteady problems equilibrate to periodic behavior. For these problems the sensitivity of periodic outputs to system parameters are often desired, and must be estimated from a finite time span or frequency domain calculation. Sensitivities computed in the time domain over a finite time span can take excessive time to converge, or fail altogether to converge to the periodic value. Additionally, finite span outputs can exhibit local extrema in parameter space which the periodic outputs they approximate do not, hindering their use in optimization. We derive a theoretical basis for this error and demonstrate it using two examples, a van der Pol oscillator and vortex shedding from a low Reynolds number airfoil. We show that output windowing enables the accurate computation of periodic output sensitivities and may allow for decreased simulation time to compute both time-averaged outputs and sensitivities. We classify two distinct window types: long-time, over a large, not necessarily integer number of periods; and short-time, over a small, integer number of periods. Finally, from these two classes we investigate several examples of window shape and demonstrate their convergence with window size and error in the period approximation, respectively.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2012.01.001</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2012-04, Vol.231 (8), p.3228-3245 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_1019644618 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Airfoils Approximation Computation Computational techniques Exact sciences and technology Integers Limit cycle oscillations Limit cycles Low Reynolds number Mathematical analysis Mathematical methods in physics Periodic Physics Sensitivity analysis Unsteady |
title | Sensitivity analysis of limit cycle oscillations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A51%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitivity%20analysis%20of%20limit%20cycle%20oscillations&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Krakos,%20Joshua%20A.&rft.date=2012-04-20&rft.volume=231&rft.issue=8&rft.spage=3228&rft.epage=3245&rft.pages=3228-3245&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2012.01.001&rft_dat=%3Cproquest_cross%3E1019644618%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019644618&rft_id=info:pmid/&rft_els_id=S0021999112000071&rfr_iscdi=true |