Economic Forecasts with Bayesian Autoregressive Distributed Lag Model: Choosing Optimal Prior in Economic Downturn
Bayesian inference requires an analyst to set priors. Setting the right prior is crucial for precise forecasts. This paper analyzes how optimal prior changes when an economy is hit by a recession. For this task, an autoregressive distributed lag model is chosen. The results show that a sharp economi...
Gespeichert in:
Veröffentlicht in: | Rīgas Tehniskās universitātes zinātniskie raksti. Scientific proceedings of Riga Technical university. 5. Sērija, Datorzinātne Datorzinātne, 2010-01, Vol.42 (Technologies of Computer Control), p.100-100 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng ; lav |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bayesian inference requires an analyst to set priors. Setting the right prior is crucial for precise forecasts. This paper analyzes how optimal prior changes when an economy is hit by a recession. For this task, an autoregressive distributed lag model is chosen. The results show that a sharp economic slowdown changes the optimal prior in two directions. First, it changes the structure of the optimal weight prior, setting smaller weight on the lagged dependent variable compared to variables containing more recent information. Second, greater uncertainty brought by a rapid economic downturn requires more space for coefficient variation, which is set by the overall tightness parameter. It is shown that the optimal overall tightness parameter may increase to such an extent that Bayesian ADL becomes equivalent to frequentist ADL. The results may be used in other fields of science where it is necessary to estimate/predict a process using Bayesian inference. |
---|---|
ISSN: | 1407-7493 |