A Comparison of Subset Selection and Adaptive Basis Function Construction for Polynomial Regression Model Building

The approach of subset selection in polynomial regression model building assumes that the chosen fixed full set of predefined basis functions contains a subset that is sufficient to describe the target relation sufficiently well. However, in most cases the necessary set of basis functions is not kno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rīgas Tehniskās universitātes zinātniskie raksti. Scientific proceedings of Riga Technical university. 5. Sērija, Datorzinātne Datorzinātne, 2009-01, Vol.38 (Applied computer systems), p.187-187
Hauptverfasser: Jekabsons, Gints, Lavendels, Jurijs
Format: Artikel
Sprache:lav
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 187
container_issue Applied computer systems
container_start_page 187
container_title Rīgas Tehniskās universitātes zinātniskie raksti. Scientific proceedings of Riga Technical university. 5. Sērija, Datorzinātne
container_volume 38
creator Jekabsons, Gints
Lavendels, Jurijs
description The approach of subset selection in polynomial regression model building assumes that the chosen fixed full set of predefined basis functions contains a subset that is sufficient to describe the target relation sufficiently well. However, in most cases the necessary set of basis functions is not known and needs to be guessed - a potentially non-trivial (and long) trial and error process. In our previous research we considered an approach for polynomial regression model building which is different from the subset selection - letting the regression model building method itself construct the basis functions necessary for creating a model of arbitrary complexity without restricting oneself to the basis functions of a predefined full model. The approach is titled Adaptive Basis Function Construction (ABFC). In the present paper we compare the two approaches for polynomial regression model building - subset selection and ABFC - both theoretically and empirically in terms of their underlying principles, computational complexity, and predictive performance. Additionally in empirical evaluations the ABFC is compared also to two other well-known regression modelling methods - Locally Weighted Polynomials and Multivariate Adaptive Regression Splines.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019643363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1019643363</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_10196433633</originalsourceid><addsrcrecordid>eNqVissKwjAQRbNQ8PkPs3QjpKRUumyL4kYQdS-xnUokzdRMIvj3KvoDri7nnDsQ4ySVq-UqzdVITJhvUmYqy-VY-AIq6nrtDZMDauEYL4wBjmixDubttGugaHQfzAOh1GwYNtF9W0WOg49faMnDnuzTUWe0hQNePTJ_yo4atFBGYxvjrjMxbLVlnP92Khab9anaLntP94gczp3hGq3VDinyOZFJnqVKZUr9cX0BF4VPJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019643363</pqid></control><display><type>article</type><title>A Comparison of Subset Selection and Adaptive Basis Function Construction for Polynomial Regression Model Building</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jekabsons, Gints ; Lavendels, Jurijs</creator><creatorcontrib>Jekabsons, Gints ; Lavendels, Jurijs</creatorcontrib><description>The approach of subset selection in polynomial regression model building assumes that the chosen fixed full set of predefined basis functions contains a subset that is sufficient to describe the target relation sufficiently well. However, in most cases the necessary set of basis functions is not known and needs to be guessed - a potentially non-trivial (and long) trial and error process. In our previous research we considered an approach for polynomial regression model building which is different from the subset selection - letting the regression model building method itself construct the basis functions necessary for creating a model of arbitrary complexity without restricting oneself to the basis functions of a predefined full model. The approach is titled Adaptive Basis Function Construction (ABFC). In the present paper we compare the two approaches for polynomial regression model building - subset selection and ABFC - both theoretically and empirically in terms of their underlying principles, computational complexity, and predictive performance. Additionally in empirical evaluations the ABFC is compared also to two other well-known regression modelling methods - Locally Weighted Polynomials and Multivariate Adaptive Regression Splines.</description><identifier>ISSN: 1407-7493</identifier><language>lav</language><subject>Basis functions ; Complexity ; Construction ; Empirical analysis ; Mathematical models ; Regression ; Splines</subject><ispartof>Rīgas Tehniskās universitātes zinātniskie raksti. Scientific proceedings of Riga Technical university. 5. Sērija, Datorzinātne, 2009-01, Vol.38 (Applied computer systems), p.187-187</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Jekabsons, Gints</creatorcontrib><creatorcontrib>Lavendels, Jurijs</creatorcontrib><title>A Comparison of Subset Selection and Adaptive Basis Function Construction for Polynomial Regression Model Building</title><title>Rīgas Tehniskās universitātes zinātniskie raksti. Scientific proceedings of Riga Technical university. 5. Sērija, Datorzinātne</title><description>The approach of subset selection in polynomial regression model building assumes that the chosen fixed full set of predefined basis functions contains a subset that is sufficient to describe the target relation sufficiently well. However, in most cases the necessary set of basis functions is not known and needs to be guessed - a potentially non-trivial (and long) trial and error process. In our previous research we considered an approach for polynomial regression model building which is different from the subset selection - letting the regression model building method itself construct the basis functions necessary for creating a model of arbitrary complexity without restricting oneself to the basis functions of a predefined full model. The approach is titled Adaptive Basis Function Construction (ABFC). In the present paper we compare the two approaches for polynomial regression model building - subset selection and ABFC - both theoretically and empirically in terms of their underlying principles, computational complexity, and predictive performance. Additionally in empirical evaluations the ABFC is compared also to two other well-known regression modelling methods - Locally Weighted Polynomials and Multivariate Adaptive Regression Splines.</description><subject>Basis functions</subject><subject>Complexity</subject><subject>Construction</subject><subject>Empirical analysis</subject><subject>Mathematical models</subject><subject>Regression</subject><subject>Splines</subject><issn>1407-7493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqVissKwjAQRbNQ8PkPs3QjpKRUumyL4kYQdS-xnUokzdRMIvj3KvoDri7nnDsQ4ySVq-UqzdVITJhvUmYqy-VY-AIq6nrtDZMDauEYL4wBjmixDubttGugaHQfzAOh1GwYNtF9W0WOg49faMnDnuzTUWe0hQNePTJ_yo4atFBGYxvjrjMxbLVlnP92Khab9anaLntP94gczp3hGq3VDinyOZFJnqVKZUr9cX0BF4VPJA</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Jekabsons, Gints</creator><creator>Lavendels, Jurijs</creator><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090101</creationdate><title>A Comparison of Subset Selection and Adaptive Basis Function Construction for Polynomial Regression Model Building</title><author>Jekabsons, Gints ; Lavendels, Jurijs</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_10196433633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>lav</language><creationdate>2009</creationdate><topic>Basis functions</topic><topic>Complexity</topic><topic>Construction</topic><topic>Empirical analysis</topic><topic>Mathematical models</topic><topic>Regression</topic><topic>Splines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jekabsons, Gints</creatorcontrib><creatorcontrib>Lavendels, Jurijs</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Rīgas Tehniskās universitātes zinātniskie raksti. Scientific proceedings of Riga Technical university. 5. Sērija, Datorzinātne</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jekabsons, Gints</au><au>Lavendels, Jurijs</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comparison of Subset Selection and Adaptive Basis Function Construction for Polynomial Regression Model Building</atitle><jtitle>Rīgas Tehniskās universitātes zinātniskie raksti. Scientific proceedings of Riga Technical university. 5. Sērija, Datorzinātne</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>38</volume><issue>Applied computer systems</issue><spage>187</spage><epage>187</epage><pages>187-187</pages><issn>1407-7493</issn><abstract>The approach of subset selection in polynomial regression model building assumes that the chosen fixed full set of predefined basis functions contains a subset that is sufficient to describe the target relation sufficiently well. However, in most cases the necessary set of basis functions is not known and needs to be guessed - a potentially non-trivial (and long) trial and error process. In our previous research we considered an approach for polynomial regression model building which is different from the subset selection - letting the regression model building method itself construct the basis functions necessary for creating a model of arbitrary complexity without restricting oneself to the basis functions of a predefined full model. The approach is titled Adaptive Basis Function Construction (ABFC). In the present paper we compare the two approaches for polynomial regression model building - subset selection and ABFC - both theoretically and empirically in terms of their underlying principles, computational complexity, and predictive performance. Additionally in empirical evaluations the ABFC is compared also to two other well-known regression modelling methods - Locally Weighted Polynomials and Multivariate Adaptive Regression Splines.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 1407-7493
ispartof Rīgas Tehniskās universitātes zinātniskie raksti. Scientific proceedings of Riga Technical university. 5. Sērija, Datorzinātne, 2009-01, Vol.38 (Applied computer systems), p.187-187
issn 1407-7493
language lav
recordid cdi_proquest_miscellaneous_1019643363
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Basis functions
Complexity
Construction
Empirical analysis
Mathematical models
Regression
Splines
title A Comparison of Subset Selection and Adaptive Basis Function Construction for Polynomial Regression Model Building
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A56%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comparison%20of%20Subset%20Selection%20and%20Adaptive%20Basis%20Function%20Construction%20for%20Polynomial%20Regression%20Model%20Building&rft.jtitle=R%C4%ABgas%20Tehnisk%C4%81s%20universit%C4%81tes%20zin%C4%81tniskie%20raksti.%20Scientific%20proceedings%20of%20Riga%20Technical%20university.%205.%20S%C4%93rija,%20Datorzin%C4%81tne&rft.au=Jekabsons,%20Gints&rft.date=2009-01-01&rft.volume=38&rft.issue=Applied%20computer%20systems&rft.spage=187&rft.epage=187&rft.pages=187-187&rft.issn=1407-7493&rft_id=info:doi/&rft_dat=%3Cproquest%3E1019643363%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019643363&rft_id=info:pmid/&rfr_iscdi=true