Kähler-Einstein surface and symmetric space
We consider the question of characterizing compact quotients of the complex 2-ball by curvature conditions, which improve the known results. Moreover, we also give curvature conditions such that a compact Kähler-Einstein surface is bi-holomorphic to a locally symmetric space.
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2011-12, Vol.54 (12), p.2627-2634 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2634 |
---|---|
container_issue | 12 |
container_start_page | 2627 |
container_title | Science China. Mathematics |
container_volume | 54 |
creator | Chen, DaGuang Hong, Yi Yang, HongCang |
description | We consider the question of characterizing compact quotients of the complex 2-ball by curvature conditions, which improve the known results. Moreover, we also give curvature conditions such that a compact Kähler-Einstein surface is bi-holomorphic to a locally symmetric space. |
doi_str_mv | 10.1007/s11425-011-4300-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019643003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1019643003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-b5a8c62c9acc72a3d5f5ac6d79a112edcf0d293e5a0ee68f510fa427eeac74b53</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EElXpAdhlyQKDx47jZImqQhGV2MDacp0JpMpP8SSL9jzchIvhKqyZxcxo9L2R3mPsGsQdCGHuCSCVmgsAnioh-PGMzSDPCh6bPI97ZlJuZK4u2YJoJ2KpQqRGzdjty8_3Z4OBr-qOBqy7hMZQOY-J68qEDm2LQ6h9Qvt4u2IXlWsIF39zzt4fV2_LNd-8Pj0vHzbcKwkD32qX-0z6wnlvpFOlrrTzWWkKByCx9JUoZaFQO4GY5ZUGUblUGkTnTbrVas5upr_70H-NSINta_LYNK7DfiQLAors5FRFFCbUh54oYGX3oW5dOETInsKxUzg2hmNPEnuMGjlpKLLdBwa768fQRUf_iH4B-r5oAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019643003</pqid></control><display><type>article</type><title>Kähler-Einstein surface and symmetric space</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Chen, DaGuang ; Hong, Yi ; Yang, HongCang</creator><creatorcontrib>Chen, DaGuang ; Hong, Yi ; Yang, HongCang</creatorcontrib><description>We consider the question of characterizing compact quotients of the complex 2-ball by curvature conditions, which improve the known results. Moreover, we also give curvature conditions such that a compact Kähler-Einstein surface is bi-holomorphic to a locally symmetric space.</description><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-011-4300-z</identifier><language>eng</language><publisher>Heidelberg: SP Science China Press</publisher><subject>Applications of Mathematics ; China ; Curvature ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Quotients</subject><ispartof>Science China. Mathematics, 2011-12, Vol.54 (12), p.2627-2634</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-b5a8c62c9acc72a3d5f5ac6d79a112edcf0d293e5a0ee68f510fa427eeac74b53</citedby><cites>FETCH-LOGICAL-c321t-b5a8c62c9acc72a3d5f5ac6d79a112edcf0d293e5a0ee68f510fa427eeac74b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11425-011-4300-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11425-011-4300-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Chen, DaGuang</creatorcontrib><creatorcontrib>Hong, Yi</creatorcontrib><creatorcontrib>Yang, HongCang</creatorcontrib><title>Kähler-Einstein surface and symmetric space</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><description>We consider the question of characterizing compact quotients of the complex 2-ball by curvature conditions, which improve the known results. Moreover, we also give curvature conditions such that a compact Kähler-Einstein surface is bi-holomorphic to a locally symmetric space.</description><subject>Applications of Mathematics</subject><subject>China</subject><subject>Curvature</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Quotients</subject><issn>1674-7283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EElXpAdhlyQKDx47jZImqQhGV2MDacp0JpMpP8SSL9jzchIvhKqyZxcxo9L2R3mPsGsQdCGHuCSCVmgsAnioh-PGMzSDPCh6bPI97ZlJuZK4u2YJoJ2KpQqRGzdjty8_3Z4OBr-qOBqy7hMZQOY-J68qEDm2LQ6h9Qvt4u2IXlWsIF39zzt4fV2_LNd-8Pj0vHzbcKwkD32qX-0z6wnlvpFOlrrTzWWkKByCx9JUoZaFQO4GY5ZUGUblUGkTnTbrVas5upr_70H-NSINta_LYNK7DfiQLAors5FRFFCbUh54oYGX3oW5dOETInsKxUzg2hmNPEnuMGjlpKLLdBwa768fQRUf_iH4B-r5oAg</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Chen, DaGuang</creator><creator>Hong, Yi</creator><creator>Yang, HongCang</creator><general>SP Science China Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20111201</creationdate><title>Kähler-Einstein surface and symmetric space</title><author>Chen, DaGuang ; Hong, Yi ; Yang, HongCang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-b5a8c62c9acc72a3d5f5ac6d79a112edcf0d293e5a0ee68f510fa427eeac74b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applications of Mathematics</topic><topic>China</topic><topic>Curvature</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Quotients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, DaGuang</creatorcontrib><creatorcontrib>Hong, Yi</creatorcontrib><creatorcontrib>Yang, HongCang</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, DaGuang</au><au>Hong, Yi</au><au>Yang, HongCang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kähler-Einstein surface and symmetric space</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><date>2011-12-01</date><risdate>2011</risdate><volume>54</volume><issue>12</issue><spage>2627</spage><epage>2634</epage><pages>2627-2634</pages><issn>1674-7283</issn><eissn>1869-1862</eissn><abstract>We consider the question of characterizing compact quotients of the complex 2-ball by curvature conditions, which improve the known results. Moreover, we also give curvature conditions such that a compact Kähler-Einstein surface is bi-holomorphic to a locally symmetric space.</abstract><cop>Heidelberg</cop><pub>SP Science China Press</pub><doi>10.1007/s11425-011-4300-z</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7283 |
ispartof | Science China. Mathematics, 2011-12, Vol.54 (12), p.2627-2634 |
issn | 1674-7283 1869-1862 |
language | eng |
recordid | cdi_proquest_miscellaneous_1019643003 |
source | SpringerLink Journals; Alma/SFX Local Collection |
subjects | Applications of Mathematics China Curvature Mathematical analysis Mathematics Mathematics and Statistics Quotients |
title | Kähler-Einstein surface and symmetric space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A44%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=K%C3%A4hler-Einstein%20surface%20and%20symmetric%20space&rft.jtitle=Science%20China.%20Mathematics&rft.au=Chen,%20DaGuang&rft.date=2011-12-01&rft.volume=54&rft.issue=12&rft.spage=2627&rft.epage=2634&rft.pages=2627-2634&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-011-4300-z&rft_dat=%3Cproquest_cross%3E1019643003%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019643003&rft_id=info:pmid/&rfr_iscdi=true |