On the skew-symmetric part of the Toeplitz component in the real normal (T + H)-problem

The real normal Toeplitz-plus-Hankel problem is to characterize the matrices that can be represented as sums of two real matrices of which one is Toeplitz and the other Hankel. For a matrix of this type, relations are found between the skew-symmetric part of the Toeplitz component and the matrix obt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics 2012-02, Vol.52 (2), p.198-202
1. Verfasser: Chugunov, V. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 202
container_issue 2
container_start_page 198
container_title Computational mathematics and mathematical physics
container_volume 52
creator Chugunov, V. N.
description The real normal Toeplitz-plus-Hankel problem is to characterize the matrices that can be represented as sums of two real matrices of which one is Toeplitz and the other Hankel. For a matrix of this type, relations are found between the skew-symmetric part of the Toeplitz component and the matrix obtained by reversing the order of columns in the Hankel component.
doi_str_mv 10.1134/S0965542511120116
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019641716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2594973941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-2d4eb0d1854dd7361084be4b3841e269be4d48854dedf8e6bf63ac75f5f53db63</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLfFU0WiO_uV5ChFrVDowYrHkI-JpibZuJsi9de7MYKgyBxm4H3ed4Yh5BTYJYCQVw8s1kpJrgCAMwC9RyaglAq01nyfTAY5GPRDcuTchjHQcSQm5GnV0v4FqXvF98DtmgZ7W-W0S21PTfklrQ12ddV_0Nw0nWmx7Wk1miymNW2NbXybrekFXZwHnTVZjc0xOSjT2uHJd5-Sx9ub9XwRLFd39_PrZZALxvqAFxIzVkCkZFGEQgOLZIYyE5EE5Dr2cyGjQcWijFBnpRZpHqrSlygyLaZkNub6vW9bdH3SVC7Huk5bNFuXAINYSwhhQM9-oRuzta2_Lom5kILzOPQQjFBujXMWy6SzVZPanU9Khk8nfz7tPXz0OM-2z2h_gv83fQJPdn32</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923432297</pqid></control><display><type>article</type><title>On the skew-symmetric part of the Toeplitz component in the real normal (T + H)-problem</title><source>SpringerLink Journals</source><creator>Chugunov, V. N.</creator><creatorcontrib>Chugunov, V. N.</creatorcontrib><description>The real normal Toeplitz-plus-Hankel problem is to characterize the matrices that can be represented as sums of two real matrices of which one is Toeplitz and the other Hankel. For a matrix of this type, relations are found between the skew-symmetric part of the Toeplitz component and the matrix obtained by reversing the order of columns in the Hankel component.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542511120116</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Alliances ; Computation ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Equality ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Matrices ; Matrix ; Matrix methods ; Physics ; Reversing ; Studies ; Sums</subject><ispartof>Computational mathematics and mathematical physics, 2012-02, Vol.52 (2), p.198-202</ispartof><rights>Pleiades Publishing, Ltd. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c300t-2d4eb0d1854dd7361084be4b3841e269be4d48854dedf8e6bf63ac75f5f53db63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965542511120116$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965542511120116$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Chugunov, V. N.</creatorcontrib><title>On the skew-symmetric part of the Toeplitz component in the real normal (T + H)-problem</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>The real normal Toeplitz-plus-Hankel problem is to characterize the matrices that can be represented as sums of two real matrices of which one is Toeplitz and the other Hankel. For a matrix of this type, relations are found between the skew-symmetric part of the Toeplitz component and the matrix obtained by reversing the order of columns in the Hankel component.</description><subject>Alliances</subject><subject>Computation</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Equality</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrices</subject><subject>Matrix</subject><subject>Matrix methods</subject><subject>Physics</subject><subject>Reversing</subject><subject>Studies</subject><subject>Sums</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1Lw0AQhhdRsFZ_gLfFU0WiO_uV5ChFrVDowYrHkI-JpibZuJsi9de7MYKgyBxm4H3ed4Yh5BTYJYCQVw8s1kpJrgCAMwC9RyaglAq01nyfTAY5GPRDcuTchjHQcSQm5GnV0v4FqXvF98DtmgZ7W-W0S21PTfklrQ12ddV_0Nw0nWmx7Wk1miymNW2NbXybrekFXZwHnTVZjc0xOSjT2uHJd5-Sx9ub9XwRLFd39_PrZZALxvqAFxIzVkCkZFGEQgOLZIYyE5EE5Dr2cyGjQcWijFBnpRZpHqrSlygyLaZkNub6vW9bdH3SVC7Huk5bNFuXAINYSwhhQM9-oRuzta2_Lom5kILzOPQQjFBujXMWy6SzVZPanU9Khk8nfz7tPXz0OM-2z2h_gv83fQJPdn32</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Chugunov, V. N.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20120201</creationdate><title>On the skew-symmetric part of the Toeplitz component in the real normal (T + H)-problem</title><author>Chugunov, V. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-2d4eb0d1854dd7361084be4b3841e269be4d48854dedf8e6bf63ac75f5f53db63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alliances</topic><topic>Computation</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Equality</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrices</topic><topic>Matrix</topic><topic>Matrix methods</topic><topic>Physics</topic><topic>Reversing</topic><topic>Studies</topic><topic>Sums</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chugunov, V. N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chugunov, V. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the skew-symmetric part of the Toeplitz component in the real normal (T + H)-problem</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2012-02-01</date><risdate>2012</risdate><volume>52</volume><issue>2</issue><spage>198</spage><epage>202</epage><pages>198-202</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>The real normal Toeplitz-plus-Hankel problem is to characterize the matrices that can be represented as sums of two real matrices of which one is Toeplitz and the other Hankel. For a matrix of this type, relations are found between the skew-symmetric part of the Toeplitz component and the matrix obtained by reversing the order of columns in the Hankel component.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S0965542511120116</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0965-5425
ispartof Computational mathematics and mathematical physics, 2012-02, Vol.52 (2), p.198-202
issn 0965-5425
1555-6662
language eng
recordid cdi_proquest_miscellaneous_1019641716
source SpringerLink Journals
subjects Alliances
Computation
Computational mathematics
Computational Mathematics and Numerical Analysis
Equality
Mathematical analysis
Mathematical models
Mathematics
Mathematics and Statistics
Matrices
Matrix
Matrix methods
Physics
Reversing
Studies
Sums
title On the skew-symmetric part of the Toeplitz component in the real normal (T + H)-problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T03%3A31%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20skew-symmetric%20part%20of%20the%20Toeplitz%20component%20in%20the%20real%20normal%20(T%20+%20H)-problem&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Chugunov,%20V.%20N.&rft.date=2012-02-01&rft.volume=52&rft.issue=2&rft.spage=198&rft.epage=202&rft.pages=198-202&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542511120116&rft_dat=%3Cproquest_cross%3E2594973941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923432297&rft_id=info:pmid/&rfr_iscdi=true