On the skew-symmetric part of the Toeplitz component in the real normal (T + H)-problem
The real normal Toeplitz-plus-Hankel problem is to characterize the matrices that can be represented as sums of two real matrices of which one is Toeplitz and the other Hankel. For a matrix of this type, relations are found between the skew-symmetric part of the Toeplitz component and the matrix obt...
Gespeichert in:
Veröffentlicht in: | Computational mathematics and mathematical physics 2012-02, Vol.52 (2), p.198-202 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 202 |
---|---|
container_issue | 2 |
container_start_page | 198 |
container_title | Computational mathematics and mathematical physics |
container_volume | 52 |
creator | Chugunov, V. N. |
description | The real normal Toeplitz-plus-Hankel problem is to characterize the matrices that can be represented as sums of two real matrices of which one is Toeplitz and the other Hankel. For a matrix of this type, relations are found between the skew-symmetric part of the Toeplitz component and the matrix obtained by reversing the order of columns in the Hankel component. |
doi_str_mv | 10.1134/S0965542511120116 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019641716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2594973941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-2d4eb0d1854dd7361084be4b3841e269be4d48854dedf8e6bf63ac75f5f53db63</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLfFU0WiO_uV5ChFrVDowYrHkI-JpibZuJsi9de7MYKgyBxm4H3ed4Yh5BTYJYCQVw8s1kpJrgCAMwC9RyaglAq01nyfTAY5GPRDcuTchjHQcSQm5GnV0v4FqXvF98DtmgZ7W-W0S21PTfklrQ12ddV_0Nw0nWmx7Wk1miymNW2NbXybrekFXZwHnTVZjc0xOSjT2uHJd5-Sx9ub9XwRLFd39_PrZZALxvqAFxIzVkCkZFGEQgOLZIYyE5EE5Dr2cyGjQcWijFBnpRZpHqrSlygyLaZkNub6vW9bdH3SVC7Huk5bNFuXAINYSwhhQM9-oRuzta2_Lom5kILzOPQQjFBujXMWy6SzVZPanU9Khk8nfz7tPXz0OM-2z2h_gv83fQJPdn32</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923432297</pqid></control><display><type>article</type><title>On the skew-symmetric part of the Toeplitz component in the real normal (T + H)-problem</title><source>SpringerLink Journals</source><creator>Chugunov, V. N.</creator><creatorcontrib>Chugunov, V. N.</creatorcontrib><description>The real normal Toeplitz-plus-Hankel problem is to characterize the matrices that can be represented as sums of two real matrices of which one is Toeplitz and the other Hankel. For a matrix of this type, relations are found between the skew-symmetric part of the Toeplitz component and the matrix obtained by reversing the order of columns in the Hankel component.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542511120116</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Alliances ; Computation ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Equality ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Matrices ; Matrix ; Matrix methods ; Physics ; Reversing ; Studies ; Sums</subject><ispartof>Computational mathematics and mathematical physics, 2012-02, Vol.52 (2), p.198-202</ispartof><rights>Pleiades Publishing, Ltd. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c300t-2d4eb0d1854dd7361084be4b3841e269be4d48854dedf8e6bf63ac75f5f53db63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965542511120116$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965542511120116$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Chugunov, V. N.</creatorcontrib><title>On the skew-symmetric part of the Toeplitz component in the real normal (T + H)-problem</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>The real normal Toeplitz-plus-Hankel problem is to characterize the matrices that can be represented as sums of two real matrices of which one is Toeplitz and the other Hankel. For a matrix of this type, relations are found between the skew-symmetric part of the Toeplitz component and the matrix obtained by reversing the order of columns in the Hankel component.</description><subject>Alliances</subject><subject>Computation</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Equality</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrices</subject><subject>Matrix</subject><subject>Matrix methods</subject><subject>Physics</subject><subject>Reversing</subject><subject>Studies</subject><subject>Sums</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1Lw0AQhhdRsFZ_gLfFU0WiO_uV5ChFrVDowYrHkI-JpibZuJsi9de7MYKgyBxm4H3ed4Yh5BTYJYCQVw8s1kpJrgCAMwC9RyaglAq01nyfTAY5GPRDcuTchjHQcSQm5GnV0v4FqXvF98DtmgZ7W-W0S21PTfklrQ12ddV_0Nw0nWmx7Wk1miymNW2NbXybrekFXZwHnTVZjc0xOSjT2uHJd5-Sx9ub9XwRLFd39_PrZZALxvqAFxIzVkCkZFGEQgOLZIYyE5EE5Dr2cyGjQcWijFBnpRZpHqrSlygyLaZkNub6vW9bdH3SVC7Huk5bNFuXAINYSwhhQM9-oRuzta2_Lom5kILzOPQQjFBujXMWy6SzVZPanU9Khk8nfz7tPXz0OM-2z2h_gv83fQJPdn32</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Chugunov, V. N.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20120201</creationdate><title>On the skew-symmetric part of the Toeplitz component in the real normal (T + H)-problem</title><author>Chugunov, V. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-2d4eb0d1854dd7361084be4b3841e269be4d48854dedf8e6bf63ac75f5f53db63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alliances</topic><topic>Computation</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Equality</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrices</topic><topic>Matrix</topic><topic>Matrix methods</topic><topic>Physics</topic><topic>Reversing</topic><topic>Studies</topic><topic>Sums</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chugunov, V. N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chugunov, V. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the skew-symmetric part of the Toeplitz component in the real normal (T + H)-problem</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2012-02-01</date><risdate>2012</risdate><volume>52</volume><issue>2</issue><spage>198</spage><epage>202</epage><pages>198-202</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>The real normal Toeplitz-plus-Hankel problem is to characterize the matrices that can be represented as sums of two real matrices of which one is Toeplitz and the other Hankel. For a matrix of this type, relations are found between the skew-symmetric part of the Toeplitz component and the matrix obtained by reversing the order of columns in the Hankel component.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S0965542511120116</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-5425 |
ispartof | Computational mathematics and mathematical physics, 2012-02, Vol.52 (2), p.198-202 |
issn | 0965-5425 1555-6662 |
language | eng |
recordid | cdi_proquest_miscellaneous_1019641716 |
source | SpringerLink Journals |
subjects | Alliances Computation Computational mathematics Computational Mathematics and Numerical Analysis Equality Mathematical analysis Mathematical models Mathematics Mathematics and Statistics Matrices Matrix Matrix methods Physics Reversing Studies Sums |
title | On the skew-symmetric part of the Toeplitz component in the real normal (T + H)-problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T03%3A31%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20skew-symmetric%20part%20of%20the%20Toeplitz%20component%20in%20the%20real%20normal%20(T%20+%20H)-problem&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Chugunov,%20V.%20N.&rft.date=2012-02-01&rft.volume=52&rft.issue=2&rft.spage=198&rft.epage=202&rft.pages=198-202&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542511120116&rft_dat=%3Cproquest_cross%3E2594973941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923432297&rft_id=info:pmid/&rfr_iscdi=true |