A Comparison of verified distance computation between implicit objects using different arithmetics for range enclosure
This paper describes a new algorithm for computing verified bounds on the distance between two arbitrary fat implicit objects. The algorithm dissects the objects into axis-aligned boxes by constructing an adaptive hierarchical decomposition during runtime. Actual distance computation is performed on...
Gespeichert in:
Veröffentlicht in: | Computing 2012-03, Vol.94 (2-4), p.281-296 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 296 |
---|---|
container_issue | 2-4 |
container_start_page | 281 |
container_title | Computing |
container_volume | 94 |
creator | Dyllong, Eva Kiel, Stefan |
description | This paper describes a new algorithm for computing verified bounds on the distance between two arbitrary fat implicit objects. The algorithm dissects the objects into axis-aligned boxes by constructing an adaptive hierarchical decomposition during runtime. Actual distance computation is performed on the cubes independently of the original object’s complexity. As the whole decomposition process and the distance computation are carried out using verified techniques like interval arithmetic, the calculated bounds are rigorous. In the second part of the paper, we test our algorithm using 18 different test cases, split up into 5 groups. Each group represents a different level of complexity, ranging from simple surfaces like the sphere to more complex surfaces like the Kleins bottle. The algorithm is independent of the actual technique for range bounding, which allows us to compare different verified arithmetics. Using our newly developed uniform framework for verified computations, we perform tests with interval arithmetic, centered forms, affine arithmetic and Taylor models. Finally, we compare them based on the time needed for deriving verified bounds with a user defined accuracy. |
doi_str_mv | 10.1007/s00607-011-0161-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019640476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1019640476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-847a980e8b9f8838b4bbf23fba6d981421f613dd7ee0993f49dfdb2b91fd69383</originalsourceid><addsrcrecordid>eNp1kUFr3DAQhUVpodu0P6A30VMvbkaWbEvHsCRtIZBLAr0JSR6lWmxpK8kp-fdV2EAhkMPMHOZ7j2EeIZ8ZfGMA03kBGGHqgLFWY2tvyI4JPnYDDNNbsgNg0Ak5_HpPPpRyAICeS7UjDxd0n9ajyaGkSJOnD5iDDzjTOZRqokPq2n6rpoYGWKx_ESMN63EJLlSa7AFdLXQrId43jfeYMVbaDOvvFWtwhfqUaTbxHilGt6SyZfxI3nmzFPz0PM_I3dXl7f5Hd33z_ef-4rpzXMjaSTEZJQGlVV5KLq2w1vfcWzPOSjLRMz8yPs8TIijFvVCzn21vFfPzqLjkZ-TryfeY058NS9VrKA6XxURMW9EMmBoFiGls6JcX6CFtObbrtOqHqWfT0DeInSCXUykZvT7msJr82Jz0UxD6FIRuQeinIDQ0TX_SlMa2L-T_xq-L_gH38Y1L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925721752</pqid></control><display><type>article</type><title>A Comparison of verified distance computation between implicit objects using different arithmetics for range enclosure</title><source>Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Dyllong, Eva ; Kiel, Stefan</creator><creatorcontrib>Dyllong, Eva ; Kiel, Stefan</creatorcontrib><description>This paper describes a new algorithm for computing verified bounds on the distance between two arbitrary fat implicit objects. The algorithm dissects the objects into axis-aligned boxes by constructing an adaptive hierarchical decomposition during runtime. Actual distance computation is performed on the cubes independently of the original object’s complexity. As the whole decomposition process and the distance computation are carried out using verified techniques like interval arithmetic, the calculated bounds are rigorous. In the second part of the paper, we test our algorithm using 18 different test cases, split up into 5 groups. Each group represents a different level of complexity, ranging from simple surfaces like the sphere to more complex surfaces like the Kleins bottle. The algorithm is independent of the actual technique for range bounding, which allows us to compare different verified arithmetics. Using our newly developed uniform framework for verified computations, we perform tests with interval arithmetic, centered forms, affine arithmetic and Taylor models. Finally, we compare them based on the time needed for deriving verified bounds with a user defined accuracy.</description><identifier>ISSN: 0010-485X</identifier><identifier>EISSN: 1436-5057</identifier><identifier>DOI: 10.1007/s00607-011-0161-0</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Adaptive algorithms ; Algorithms ; Analysis ; Arithmetic ; Artificial Intelligence ; Complexity ; Computation ; Computer Appl. in Administrative Data Processing ; Computer Communication Networks ; Computer Science ; Decomposition ; Hierarchies ; Information Systems Applications (incl.Internet) ; Interval arithmetic ; Mathematical models ; Software Engineering ; Studies</subject><ispartof>Computing, 2012-03, Vol.94 (2-4), p.281-296</ispartof><rights>Springer-Verlag 2011</rights><rights>Springer-Verlag 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-847a980e8b9f8838b4bbf23fba6d981421f613dd7ee0993f49dfdb2b91fd69383</citedby><cites>FETCH-LOGICAL-c348t-847a980e8b9f8838b4bbf23fba6d981421f613dd7ee0993f49dfdb2b91fd69383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00607-011-0161-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00607-011-0161-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Dyllong, Eva</creatorcontrib><creatorcontrib>Kiel, Stefan</creatorcontrib><title>A Comparison of verified distance computation between implicit objects using different arithmetics for range enclosure</title><title>Computing</title><addtitle>Computing</addtitle><description>This paper describes a new algorithm for computing verified bounds on the distance between two arbitrary fat implicit objects. The algorithm dissects the objects into axis-aligned boxes by constructing an adaptive hierarchical decomposition during runtime. Actual distance computation is performed on the cubes independently of the original object’s complexity. As the whole decomposition process and the distance computation are carried out using verified techniques like interval arithmetic, the calculated bounds are rigorous. In the second part of the paper, we test our algorithm using 18 different test cases, split up into 5 groups. Each group represents a different level of complexity, ranging from simple surfaces like the sphere to more complex surfaces like the Kleins bottle. The algorithm is independent of the actual technique for range bounding, which allows us to compare different verified arithmetics. Using our newly developed uniform framework for verified computations, we perform tests with interval arithmetic, centered forms, affine arithmetic and Taylor models. Finally, we compare them based on the time needed for deriving verified bounds with a user defined accuracy.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Arithmetic</subject><subject>Artificial Intelligence</subject><subject>Complexity</subject><subject>Computation</subject><subject>Computer Appl. in Administrative Data Processing</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Decomposition</subject><subject>Hierarchies</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Interval arithmetic</subject><subject>Mathematical models</subject><subject>Software Engineering</subject><subject>Studies</subject><issn>0010-485X</issn><issn>1436-5057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kUFr3DAQhUVpodu0P6A30VMvbkaWbEvHsCRtIZBLAr0JSR6lWmxpK8kp-fdV2EAhkMPMHOZ7j2EeIZ8ZfGMA03kBGGHqgLFWY2tvyI4JPnYDDNNbsgNg0Ak5_HpPPpRyAICeS7UjDxd0n9ajyaGkSJOnD5iDDzjTOZRqokPq2n6rpoYGWKx_ESMN63EJLlSa7AFdLXQrId43jfeYMVbaDOvvFWtwhfqUaTbxHilGt6SyZfxI3nmzFPz0PM_I3dXl7f5Hd33z_ef-4rpzXMjaSTEZJQGlVV5KLq2w1vfcWzPOSjLRMz8yPs8TIijFvVCzn21vFfPzqLjkZ-TryfeY058NS9VrKA6XxURMW9EMmBoFiGls6JcX6CFtObbrtOqHqWfT0DeInSCXUykZvT7msJr82Jz0UxD6FIRuQeinIDQ0TX_SlMa2L-T_xq-L_gH38Y1L</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Dyllong, Eva</creator><creator>Kiel, Stefan</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20120301</creationdate><title>A Comparison of verified distance computation between implicit objects using different arithmetics for range enclosure</title><author>Dyllong, Eva ; Kiel, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-847a980e8b9f8838b4bbf23fba6d981421f613dd7ee0993f49dfdb2b91fd69383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Arithmetic</topic><topic>Artificial Intelligence</topic><topic>Complexity</topic><topic>Computation</topic><topic>Computer Appl. in Administrative Data Processing</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Decomposition</topic><topic>Hierarchies</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Interval arithmetic</topic><topic>Mathematical models</topic><topic>Software Engineering</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dyllong, Eva</creatorcontrib><creatorcontrib>Kiel, Stefan</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dyllong, Eva</au><au>Kiel, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comparison of verified distance computation between implicit objects using different arithmetics for range enclosure</atitle><jtitle>Computing</jtitle><stitle>Computing</stitle><date>2012-03-01</date><risdate>2012</risdate><volume>94</volume><issue>2-4</issue><spage>281</spage><epage>296</epage><pages>281-296</pages><issn>0010-485X</issn><eissn>1436-5057</eissn><abstract>This paper describes a new algorithm for computing verified bounds on the distance between two arbitrary fat implicit objects. The algorithm dissects the objects into axis-aligned boxes by constructing an adaptive hierarchical decomposition during runtime. Actual distance computation is performed on the cubes independently of the original object’s complexity. As the whole decomposition process and the distance computation are carried out using verified techniques like interval arithmetic, the calculated bounds are rigorous. In the second part of the paper, we test our algorithm using 18 different test cases, split up into 5 groups. Each group represents a different level of complexity, ranging from simple surfaces like the sphere to more complex surfaces like the Kleins bottle. The algorithm is independent of the actual technique for range bounding, which allows us to compare different verified arithmetics. Using our newly developed uniform framework for verified computations, we perform tests with interval arithmetic, centered forms, affine arithmetic and Taylor models. Finally, we compare them based on the time needed for deriving verified bounds with a user defined accuracy.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00607-011-0161-0</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-485X |
ispartof | Computing, 2012-03, Vol.94 (2-4), p.281-296 |
issn | 0010-485X 1436-5057 |
language | eng |
recordid | cdi_proquest_miscellaneous_1019640476 |
source | Business Source Complete; Springer Nature - Complete Springer Journals |
subjects | Adaptive algorithms Algorithms Analysis Arithmetic Artificial Intelligence Complexity Computation Computer Appl. in Administrative Data Processing Computer Communication Networks Computer Science Decomposition Hierarchies Information Systems Applications (incl.Internet) Interval arithmetic Mathematical models Software Engineering Studies |
title | A Comparison of verified distance computation between implicit objects using different arithmetics for range enclosure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A09%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comparison%20of%20verified%20distance%20computation%20between%20implicit%20objects%20using%20different%20arithmetics%20for%20range%20enclosure&rft.jtitle=Computing&rft.au=Dyllong,%20Eva&rft.date=2012-03-01&rft.volume=94&rft.issue=2-4&rft.spage=281&rft.epage=296&rft.pages=281-296&rft.issn=0010-485X&rft.eissn=1436-5057&rft_id=info:doi/10.1007/s00607-011-0161-0&rft_dat=%3Cproquest_cross%3E1019640476%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=925721752&rft_id=info:pmid/&rfr_iscdi=true |