Tank Heating Model for Aircraft Fuel Thermal Systems with Recirculation
Fuel thermal management is an important consideration in the design and operation of modern high performance aircraft. In many cases, fuel is a primary heat sink for thermal loads associated with the cooling of the airframe as well as propulsion, electronic, actuator, and payload systems. It is now...
Gespeichert in:
Veröffentlicht in: | Journal of propulsion and power 2012-01, Vol.28 (1), p.204-210 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 210 |
---|---|
container_issue | 1 |
container_start_page | 204 |
container_title | Journal of propulsion and power |
container_volume | 28 |
creator | German, Brian J |
description | Fuel thermal management is an important consideration in the design and operation of modern high performance aircraft. In many cases, fuel is a primary heat sink for thermal loads associated with the cooling of the airframe as well as propulsion, electronic, actuator, and payload systems. It is now common for thermal systems to recirculate warm fuel to the tanks, resulting in a rise in temperature of the mission fuel mass. This paper presents a model that integrates heat transfer during mission segments to determine the thermal endurance of an aircraft in terms of fuel tank temperature rise. Cases with and without tank-wall heat transfer are considered. The model is intended for early-phase trade studies to determine whether a proposed vehicle design will likely be restricted in operational performance by tank temperature limits. An example is provided to demonstrate the application of the model to determine tank temperature rise during a notional aircraft mission. [PUBLISHER ABSTRACT] |
doi_str_mv | 10.2514/1.B34240 |
format | Article |
fullrecord | <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019637371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2957726471</sourcerecordid><originalsourceid>FETCH-LOGICAL-a318t-84611e490e71c8d4d50806365c01870cad3f9e6489af66f328e768fae1bbf19f3</originalsourceid><addsrcrecordid>eNpdkFFLwzAUhYMoOKfgTwiI4Etn7pIm6eMUtwkTQedzydIb19k2M2mR_XsrE5Q9Hbh89-NwCLkENhqnIG5hdMfFWLAjMoCU84RrJY_JgCmhEyFTfUrOYtwwBlJLNSCzpWk-6BxNWzbv9MkXWFHnA52UwQbjWjrt-styjaE2FX3dxRbrSL_Kdk1f0PZQV_WvvjknJ85UES9-c0jepg_L-3myeJ493k8WieGg20QLCYAiY6jA6kIUKdNMcplaBloxawruMpRCZ8ZJ6fhYo5LaGYTVykHm-JDc7L3b4D87jG1el9FiVZkGfRdzYJBJrriCHr06QDe-C03fLgcupFYp6OxPaIOPMaDLt6GsTdj1qvxn0Rzy_aI9er1HTWnMP9kh9w3zTHFx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346875189</pqid></control><display><type>article</type><title>Tank Heating Model for Aircraft Fuel Thermal Systems with Recirculation</title><source>Alma/SFX Local Collection</source><creator>German, Brian J</creator><creatorcontrib>German, Brian J</creatorcontrib><description>Fuel thermal management is an important consideration in the design and operation of modern high performance aircraft. In many cases, fuel is a primary heat sink for thermal loads associated with the cooling of the airframe as well as propulsion, electronic, actuator, and payload systems. It is now common for thermal systems to recirculate warm fuel to the tanks, resulting in a rise in temperature of the mission fuel mass. This paper presents a model that integrates heat transfer during mission segments to determine the thermal endurance of an aircraft in terms of fuel tank temperature rise. Cases with and without tank-wall heat transfer are considered. The model is intended for early-phase trade studies to determine whether a proposed vehicle design will likely be restricted in operational performance by tank temperature limits. An example is provided to demonstrate the application of the model to determine tank temperature rise during a notional aircraft mission. [PUBLISHER ABSTRACT]</description><identifier>ISSN: 0748-4658</identifier><identifier>EISSN: 1533-3876</identifier><identifier>DOI: 10.2514/1.B34240</identifier><identifier>CODEN: JPPOEL</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Aircraft ; Aircraft fuels ; Design engineering ; Fuel tanks ; Fuels ; Missions ; Propulsion ; Tanks</subject><ispartof>Journal of propulsion and power, 2012-01, Vol.28 (1), p.204-210</ispartof><rights>Copyright American Institute of Aeronautics and Astronautics Jan-Feb 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a318t-84611e490e71c8d4d50806365c01870cad3f9e6489af66f328e768fae1bbf19f3</citedby><cites>FETCH-LOGICAL-a318t-84611e490e71c8d4d50806365c01870cad3f9e6489af66f328e768fae1bbf19f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>German, Brian J</creatorcontrib><title>Tank Heating Model for Aircraft Fuel Thermal Systems with Recirculation</title><title>Journal of propulsion and power</title><description>Fuel thermal management is an important consideration in the design and operation of modern high performance aircraft. In many cases, fuel is a primary heat sink for thermal loads associated with the cooling of the airframe as well as propulsion, electronic, actuator, and payload systems. It is now common for thermal systems to recirculate warm fuel to the tanks, resulting in a rise in temperature of the mission fuel mass. This paper presents a model that integrates heat transfer during mission segments to determine the thermal endurance of an aircraft in terms of fuel tank temperature rise. Cases with and without tank-wall heat transfer are considered. The model is intended for early-phase trade studies to determine whether a proposed vehicle design will likely be restricted in operational performance by tank temperature limits. An example is provided to demonstrate the application of the model to determine tank temperature rise during a notional aircraft mission. [PUBLISHER ABSTRACT]</description><subject>Aircraft</subject><subject>Aircraft fuels</subject><subject>Design engineering</subject><subject>Fuel tanks</subject><subject>Fuels</subject><subject>Missions</subject><subject>Propulsion</subject><subject>Tanks</subject><issn>0748-4658</issn><issn>1533-3876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpdkFFLwzAUhYMoOKfgTwiI4Etn7pIm6eMUtwkTQedzydIb19k2M2mR_XsrE5Q9Hbh89-NwCLkENhqnIG5hdMfFWLAjMoCU84RrJY_JgCmhEyFTfUrOYtwwBlJLNSCzpWk-6BxNWzbv9MkXWFHnA52UwQbjWjrt-styjaE2FX3dxRbrSL_Kdk1f0PZQV_WvvjknJ85UES9-c0jepg_L-3myeJ493k8WieGg20QLCYAiY6jA6kIUKdNMcplaBloxawruMpRCZ8ZJ6fhYo5LaGYTVykHm-JDc7L3b4D87jG1el9FiVZkGfRdzYJBJrriCHr06QDe-C03fLgcupFYp6OxPaIOPMaDLt6GsTdj1qvxn0Rzy_aI9er1HTWnMP9kh9w3zTHFx</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>German, Brian J</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>7SU</scope><scope>C1K</scope></search><sort><creationdate>201201</creationdate><title>Tank Heating Model for Aircraft Fuel Thermal Systems with Recirculation</title><author>German, Brian J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a318t-84611e490e71c8d4d50806365c01870cad3f9e6489af66f328e768fae1bbf19f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aircraft</topic><topic>Aircraft fuels</topic><topic>Design engineering</topic><topic>Fuel tanks</topic><topic>Fuels</topic><topic>Missions</topic><topic>Propulsion</topic><topic>Tanks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>German, Brian J</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environmental Engineering Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Journal of propulsion and power</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>German, Brian J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tank Heating Model for Aircraft Fuel Thermal Systems with Recirculation</atitle><jtitle>Journal of propulsion and power</jtitle><date>2012-01</date><risdate>2012</risdate><volume>28</volume><issue>1</issue><spage>204</spage><epage>210</epage><pages>204-210</pages><issn>0748-4658</issn><eissn>1533-3876</eissn><coden>JPPOEL</coden><abstract>Fuel thermal management is an important consideration in the design and operation of modern high performance aircraft. In many cases, fuel is a primary heat sink for thermal loads associated with the cooling of the airframe as well as propulsion, electronic, actuator, and payload systems. It is now common for thermal systems to recirculate warm fuel to the tanks, resulting in a rise in temperature of the mission fuel mass. This paper presents a model that integrates heat transfer during mission segments to determine the thermal endurance of an aircraft in terms of fuel tank temperature rise. Cases with and without tank-wall heat transfer are considered. The model is intended for early-phase trade studies to determine whether a proposed vehicle design will likely be restricted in operational performance by tank temperature limits. An example is provided to demonstrate the application of the model to determine tank temperature rise during a notional aircraft mission. [PUBLISHER ABSTRACT]</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.B34240</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0748-4658 |
ispartof | Journal of propulsion and power, 2012-01, Vol.28 (1), p.204-210 |
issn | 0748-4658 1533-3876 |
language | eng |
recordid | cdi_proquest_miscellaneous_1019637371 |
source | Alma/SFX Local Collection |
subjects | Aircraft Aircraft fuels Design engineering Fuel tanks Fuels Missions Propulsion Tanks |
title | Tank Heating Model for Aircraft Fuel Thermal Systems with Recirculation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A02%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tank%20Heating%20Model%20for%20Aircraft%20Fuel%20Thermal%20Systems%20with%20Recirculation&rft.jtitle=Journal%20of%20propulsion%20and%20power&rft.au=German,%20Brian%20J&rft.date=2012-01&rft.volume=28&rft.issue=1&rft.spage=204&rft.epage=210&rft.pages=204-210&rft.issn=0748-4658&rft.eissn=1533-3876&rft.coden=JPPOEL&rft_id=info:doi/10.2514/1.B34240&rft_dat=%3Cproquest_aiaa_%3E2957726471%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346875189&rft_id=info:pmid/&rfr_iscdi=true |