Calculation of the mutual capacitance of nanoobjects

A method for determination of the mutual effective capacitance for molecules, molecular clusters, and nanoparticles on the basis of the quantum-mechanical calculation of the interaction energy of nanoscale charged objects is proposed. The mutual effective capacitance for pairs of similar molecules (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of communications technology & electronics 2011-12, Vol.56 (12), p.1483-1489
Hauptverfasser: Gerasimov, Ya. S., Shorokhov, V. V., Maresov, A. G., Soldatov, E. S., Snigirev, O. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1489
container_issue 12
container_start_page 1483
container_title Journal of communications technology & electronics
container_volume 56
creator Gerasimov, Ya. S.
Shorokhov, V. V.
Maresov, A. G.
Soldatov, E. S.
Snigirev, O. V.
description A method for determination of the mutual effective capacitance for molecules, molecular clusters, and nanoparticles on the basis of the quantum-mechanical calculation of the interaction energy of nanoscale charged objects is proposed. The mutual effective capacitance for pairs of similar molecules (carborane C 2 B 10 H 12 , fullerene C 60 , and molecular cluster Pt 5 (CO) 6 (PPh 3 ) 4 ) with a size of 0.3 to 0.7 nm is calculated for distances between these molecules from 2 to 20 nm. It is demonstrated that this method makes it possible to determine the scale of distances between nanoobjects for which it is necessary to take into account quantum corrections.
doi_str_mv 10.1134/S106422691111009X
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019636651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A364331321</galeid><sourcerecordid>A364331321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-ec8959829b4ff98535f276db6990a5a5aaab8f6289e6bd32f49e0709d6c78e83</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhhdRsFZ_gLfiScGt-dikybEUPwoFwfbgbcmmkzZlm9RNFvTfm7KCVjEDmZD3eYdMJssuMRpiTIu7OUa8IIRLnBZC8vUo62HGWM4ZGx2nc5LzvX6anYWwQYhKjmgvKyaq1m2tovVu4M0grmGwbWOr6oFWO6VtVE7DXnHKeV9tQMdwnp0YVQe4-Mr9bPFwv5g85bPnx-lkPMt1wUTMQQvJpCCyKoyRglFmyIgvKy4lUiyFUpUwnAgJvFpSYgoJaITkkuuRAEH72XVXdtf4txZCLLc2aKhr5cC3ocQIS045ZzihV7_QjW8blx5XSkwETr_AEzTsoJWqobTO-NgonWIJW6u9A2PT_ZjyglJMyb7qzYEhMRHe40q1IZTT-cshe_uDrdpgHYS0Bbtax9BZDnDc4brxITRgyl1jt6r5SF2V-4mWfyaaPKTzhMS6FTTfTf5v-gTPyJ8t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912816556</pqid></control><display><type>article</type><title>Calculation of the mutual capacitance of nanoobjects</title><source>SpringerNature Journals</source><creator>Gerasimov, Ya. S. ; Shorokhov, V. V. ; Maresov, A. G. ; Soldatov, E. S. ; Snigirev, O. V.</creator><creatorcontrib>Gerasimov, Ya. S. ; Shorokhov, V. V. ; Maresov, A. G. ; Soldatov, E. S. ; Snigirev, O. V.</creatorcontrib><description>A method for determination of the mutual effective capacitance for molecules, molecular clusters, and nanoparticles on the basis of the quantum-mechanical calculation of the interaction energy of nanoscale charged objects is proposed. The mutual effective capacitance for pairs of similar molecules (carborane C 2 B 10 H 12 , fullerene C 60 , and molecular cluster Pt 5 (CO) 6 (PPh 3 ) 4 ) with a size of 0.3 to 0.7 nm is calculated for distances between these molecules from 2 to 20 nm. It is demonstrated that this method makes it possible to determine the scale of distances between nanoobjects for which it is necessary to take into account quantum corrections.</description><identifier>ISSN: 1064-2269</identifier><identifier>EISSN: 1555-6557</identifier><identifier>DOI: 10.1134/S106422691111009X</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Analysis ; Approximation ; Buckminsterfullerene ; Capacitance ; Communications Engineering ; Electronics ; Electrons ; Energy ; Engineering ; Fullerenes ; Mathematical analysis ; Molecular clusters ; Nanocomposites ; Nanoelectronics ; Nanomaterials ; Nanoparticles ; Nanostructure ; Networks ; Quantum physics ; Studies ; Transistors</subject><ispartof>Journal of communications technology &amp; electronics, 2011-12, Vol.56 (12), p.1483-1489</ispartof><rights>Pleiades Publishing, Ltd. 2011</rights><rights>COPYRIGHT 2011 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-ec8959829b4ff98535f276db6990a5a5aaab8f6289e6bd32f49e0709d6c78e83</citedby><cites>FETCH-LOGICAL-c458t-ec8959829b4ff98535f276db6990a5a5aaab8f6289e6bd32f49e0709d6c78e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S106422691111009X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S106422691111009X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Gerasimov, Ya. S.</creatorcontrib><creatorcontrib>Shorokhov, V. V.</creatorcontrib><creatorcontrib>Maresov, A. G.</creatorcontrib><creatorcontrib>Soldatov, E. S.</creatorcontrib><creatorcontrib>Snigirev, O. V.</creatorcontrib><title>Calculation of the mutual capacitance of nanoobjects</title><title>Journal of communications technology &amp; electronics</title><addtitle>J. Commun. Technol. Electron</addtitle><description>A method for determination of the mutual effective capacitance for molecules, molecular clusters, and nanoparticles on the basis of the quantum-mechanical calculation of the interaction energy of nanoscale charged objects is proposed. The mutual effective capacitance for pairs of similar molecules (carborane C 2 B 10 H 12 , fullerene C 60 , and molecular cluster Pt 5 (CO) 6 (PPh 3 ) 4 ) with a size of 0.3 to 0.7 nm is calculated for distances between these molecules from 2 to 20 nm. It is demonstrated that this method makes it possible to determine the scale of distances between nanoobjects for which it is necessary to take into account quantum corrections.</description><subject>Analysis</subject><subject>Approximation</subject><subject>Buckminsterfullerene</subject><subject>Capacitance</subject><subject>Communications Engineering</subject><subject>Electronics</subject><subject>Electrons</subject><subject>Energy</subject><subject>Engineering</subject><subject>Fullerenes</subject><subject>Mathematical analysis</subject><subject>Molecular clusters</subject><subject>Nanocomposites</subject><subject>Nanoelectronics</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Networks</subject><subject>Quantum physics</subject><subject>Studies</subject><subject>Transistors</subject><issn>1064-2269</issn><issn>1555-6557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1LAzEQhhdRsFZ_gLfiScGt-dikybEUPwoFwfbgbcmmkzZlm9RNFvTfm7KCVjEDmZD3eYdMJssuMRpiTIu7OUa8IIRLnBZC8vUo62HGWM4ZGx2nc5LzvX6anYWwQYhKjmgvKyaq1m2tovVu4M0grmGwbWOr6oFWO6VtVE7DXnHKeV9tQMdwnp0YVQe4-Mr9bPFwv5g85bPnx-lkPMt1wUTMQQvJpCCyKoyRglFmyIgvKy4lUiyFUpUwnAgJvFpSYgoJaITkkuuRAEH72XVXdtf4txZCLLc2aKhr5cC3ocQIS045ZzihV7_QjW8blx5XSkwETr_AEzTsoJWqobTO-NgonWIJW6u9A2PT_ZjyglJMyb7qzYEhMRHe40q1IZTT-cshe_uDrdpgHYS0Bbtax9BZDnDc4brxITRgyl1jt6r5SF2V-4mWfyaaPKTzhMS6FTTfTf5v-gTPyJ8t</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Gerasimov, Ya. S.</creator><creator>Shorokhov, V. V.</creator><creator>Maresov, A. G.</creator><creator>Soldatov, E. S.</creator><creator>Snigirev, O. V.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>3V.</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>88K</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L7M</scope><scope>M0C</scope><scope>M2P</scope><scope>M2T</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20111201</creationdate><title>Calculation of the mutual capacitance of nanoobjects</title><author>Gerasimov, Ya. S. ; Shorokhov, V. V. ; Maresov, A. G. ; Soldatov, E. S. ; Snigirev, O. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-ec8959829b4ff98535f276db6990a5a5aaab8f6289e6bd32f49e0709d6c78e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis</topic><topic>Approximation</topic><topic>Buckminsterfullerene</topic><topic>Capacitance</topic><topic>Communications Engineering</topic><topic>Electronics</topic><topic>Electrons</topic><topic>Energy</topic><topic>Engineering</topic><topic>Fullerenes</topic><topic>Mathematical analysis</topic><topic>Molecular clusters</topic><topic>Nanocomposites</topic><topic>Nanoelectronics</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Networks</topic><topic>Quantum physics</topic><topic>Studies</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerasimov, Ya. S.</creatorcontrib><creatorcontrib>Shorokhov, V. V.</creatorcontrib><creatorcontrib>Maresov, A. G.</creatorcontrib><creatorcontrib>Soldatov, E. S.</creatorcontrib><creatorcontrib>Snigirev, O. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of communications technology &amp; electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerasimov, Ya. S.</au><au>Shorokhov, V. V.</au><au>Maresov, A. G.</au><au>Soldatov, E. S.</au><au>Snigirev, O. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calculation of the mutual capacitance of nanoobjects</atitle><jtitle>Journal of communications technology &amp; electronics</jtitle><stitle>J. Commun. Technol. Electron</stitle><date>2011-12-01</date><risdate>2011</risdate><volume>56</volume><issue>12</issue><spage>1483</spage><epage>1489</epage><pages>1483-1489</pages><issn>1064-2269</issn><eissn>1555-6557</eissn><abstract>A method for determination of the mutual effective capacitance for molecules, molecular clusters, and nanoparticles on the basis of the quantum-mechanical calculation of the interaction energy of nanoscale charged objects is proposed. The mutual effective capacitance for pairs of similar molecules (carborane C 2 B 10 H 12 , fullerene C 60 , and molecular cluster Pt 5 (CO) 6 (PPh 3 ) 4 ) with a size of 0.3 to 0.7 nm is calculated for distances between these molecules from 2 to 20 nm. It is demonstrated that this method makes it possible to determine the scale of distances between nanoobjects for which it is necessary to take into account quantum corrections.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S106422691111009X</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-2269
ispartof Journal of communications technology & electronics, 2011-12, Vol.56 (12), p.1483-1489
issn 1064-2269
1555-6557
language eng
recordid cdi_proquest_miscellaneous_1019636651
source SpringerNature Journals
subjects Analysis
Approximation
Buckminsterfullerene
Capacitance
Communications Engineering
Electronics
Electrons
Energy
Engineering
Fullerenes
Mathematical analysis
Molecular clusters
Nanocomposites
Nanoelectronics
Nanomaterials
Nanoparticles
Nanostructure
Networks
Quantum physics
Studies
Transistors
title Calculation of the mutual capacitance of nanoobjects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T10%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calculation%20of%20the%20mutual%20capacitance%20of%20nanoobjects&rft.jtitle=Journal%20of%20communications%20technology%20&%20electronics&rft.au=Gerasimov,%20Ya.%20S.&rft.date=2011-12-01&rft.volume=56&rft.issue=12&rft.spage=1483&rft.epage=1489&rft.pages=1483-1489&rft.issn=1064-2269&rft.eissn=1555-6557&rft_id=info:doi/10.1134/S106422691111009X&rft_dat=%3Cgale_proqu%3EA364331321%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912816556&rft_id=info:pmid/&rft_galeid=A364331321&rfr_iscdi=true