A review of three-dimensional viscoelastic models with an application to viscoelasticity characterization using nanoindentation

This work reviewed different three-dimensional viscoelastic models, including Hooke, Newton, Maxwell, Voigt, Boltzmann, Zener, Tsay, Burgers, Weichert, and Kelvin models. The relaxation moduli and creep compliances are derived and related via the viscoelastic parameters. Physical meanings of viscoel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microelectronics and reliability 2012-03, Vol.52 (3), p.541-558
Hauptverfasser: Chen, Dao-Long, Yang, Ping-Feng, Lai, Yi-Shao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 558
container_issue 3
container_start_page 541
container_title Microelectronics and reliability
container_volume 52
creator Chen, Dao-Long
Yang, Ping-Feng
Lai, Yi-Shao
description This work reviewed different three-dimensional viscoelastic models, including Hooke, Newton, Maxwell, Voigt, Boltzmann, Zener, Tsay, Burgers, Weichert, and Kelvin models. The relaxation moduli and creep compliances are derived and related via the viscoelastic parameters. Physical meanings of viscoelastic parameters are also explained for each model. The formulae of relaxation test, creep test, and dynamic loading test for each viscoelastic models are formulated. Relaxation moduli and creep compliances are drawn for visualizing and comparing. The less discussed time-dependent Poisson’s ratios are also emphasized and compared in this work. All viscoelastic functions can be represented as the relaxation-creep duality representation. The instantaneous and permanent moduli and compliances as well as the fractions of exponential and complementary exponential pairs with different characteristic times can be immediately understood via the relaxation-creep duality representation. The three-dimensional Burgers model is selected to describe the viscoelastic behavior of PMMA with nanoindentation test. The two-step curve fitting method is introduced to fit the P–t curve and h–t curve separately. The fitting results are better than the direct fitting of P–h curve in the literature. The relaxation moduli and creep compliances can then be used to understand the viscoelastic behavior of PMMA.
doi_str_mv 10.1016/j.microrel.2011.10.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019634677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0026271411004537</els_id><sourcerecordid>1019634677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-1cc2ad211b47453b8a13b59056c729c36dd2664c282218c4fc763f7b0917739b3</originalsourceid><addsrcrecordid>eNqFkMFq3DAQhkVpoNtNX6HoUujFG0m2pfWtITRtINBLA7kZeTzuziJLW0mbkF766pW7aaGnngZ-vn9m-Bh7K8VGCqkv9puZIIaIbqOElCXcCCFfsJXcGlV1jbx_yVZCKF0pI5tX7HVKeyGEKeyK_bzkER8IH3mYeN5FxGqkGX2i4K3jD5QgoLMpE_A5jOgSf6S849Zzezg4ApsLyXP4B6X8xGFno4WMkX6cmGMi_4176wP5EX3-nZ6zs8m6hG-e55rdXX_8evW5uv3y6ebq8raC2rS5kgDKjkrKoTFNWw9bK-uh7USrwagOaj2OSusG1FYpuYVmAqPryQyik8bU3VCv2fvT3kMM34-Ycj-Xf9E56zEcU19MdrpudKHXTJ_QIjWliFN_iDTb-FSghdP9vv9jvF-ML3kxXorvnm_YBNZN0Xqg9Let2vKh0Qv34cQVm4v72Ccg9IAjRYTcj4H-d-oXpSydYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019634677</pqid></control><display><type>article</type><title>A review of three-dimensional viscoelastic models with an application to viscoelasticity characterization using nanoindentation</title><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Chen, Dao-Long ; Yang, Ping-Feng ; Lai, Yi-Shao</creator><creatorcontrib>Chen, Dao-Long ; Yang, Ping-Feng ; Lai, Yi-Shao</creatorcontrib><description>This work reviewed different three-dimensional viscoelastic models, including Hooke, Newton, Maxwell, Voigt, Boltzmann, Zener, Tsay, Burgers, Weichert, and Kelvin models. The relaxation moduli and creep compliances are derived and related via the viscoelastic parameters. Physical meanings of viscoelastic parameters are also explained for each model. The formulae of relaxation test, creep test, and dynamic loading test for each viscoelastic models are formulated. Relaxation moduli and creep compliances are drawn for visualizing and comparing. The less discussed time-dependent Poisson’s ratios are also emphasized and compared in this work. All viscoelastic functions can be represented as the relaxation-creep duality representation. The instantaneous and permanent moduli and compliances as well as the fractions of exponential and complementary exponential pairs with different characteristic times can be immediately understood via the relaxation-creep duality representation. The three-dimensional Burgers model is selected to describe the viscoelastic behavior of PMMA with nanoindentation test. The two-step curve fitting method is introduced to fit the P–t curve and h–t curve separately. The fitting results are better than the direct fitting of P–h curve in the literature. The relaxation moduli and creep compliances can then be used to understand the viscoelastic behavior of PMMA.</description><identifier>ISSN: 0026-2714</identifier><identifier>EISSN: 1872-941X</identifier><identifier>DOI: 10.1016/j.microrel.2011.10.001</identifier><identifier>CODEN: MCRLAS</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Creep (materials) ; Design. Technologies. Operation analysis. Testing ; Electronics ; Exact sciences and technology ; Fittings ; Integrated circuits ; Mathematical models ; Nanoindentation ; Polymethyl methacrylates ; Representations ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Three dimensional models ; Viscoelasticity</subject><ispartof>Microelectronics and reliability, 2012-03, Vol.52 (3), p.541-558</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-1cc2ad211b47453b8a13b59056c729c36dd2664c282218c4fc763f7b0917739b3</citedby><cites>FETCH-LOGICAL-c375t-1cc2ad211b47453b8a13b59056c729c36dd2664c282218c4fc763f7b0917739b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.microrel.2011.10.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25664761$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Dao-Long</creatorcontrib><creatorcontrib>Yang, Ping-Feng</creatorcontrib><creatorcontrib>Lai, Yi-Shao</creatorcontrib><title>A review of three-dimensional viscoelastic models with an application to viscoelasticity characterization using nanoindentation</title><title>Microelectronics and reliability</title><description>This work reviewed different three-dimensional viscoelastic models, including Hooke, Newton, Maxwell, Voigt, Boltzmann, Zener, Tsay, Burgers, Weichert, and Kelvin models. The relaxation moduli and creep compliances are derived and related via the viscoelastic parameters. Physical meanings of viscoelastic parameters are also explained for each model. The formulae of relaxation test, creep test, and dynamic loading test for each viscoelastic models are formulated. Relaxation moduli and creep compliances are drawn for visualizing and comparing. The less discussed time-dependent Poisson’s ratios are also emphasized and compared in this work. All viscoelastic functions can be represented as the relaxation-creep duality representation. The instantaneous and permanent moduli and compliances as well as the fractions of exponential and complementary exponential pairs with different characteristic times can be immediately understood via the relaxation-creep duality representation. The three-dimensional Burgers model is selected to describe the viscoelastic behavior of PMMA with nanoindentation test. The two-step curve fitting method is introduced to fit the P–t curve and h–t curve separately. The fitting results are better than the direct fitting of P–h curve in the literature. The relaxation moduli and creep compliances can then be used to understand the viscoelastic behavior of PMMA.</description><subject>Applied sciences</subject><subject>Creep (materials)</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fittings</subject><subject>Integrated circuits</subject><subject>Mathematical models</subject><subject>Nanoindentation</subject><subject>Polymethyl methacrylates</subject><subject>Representations</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Three dimensional models</subject><subject>Viscoelasticity</subject><issn>0026-2714</issn><issn>1872-941X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkMFq3DAQhkVpoNtNX6HoUujFG0m2pfWtITRtINBLA7kZeTzuziJLW0mbkF766pW7aaGnngZ-vn9m-Bh7K8VGCqkv9puZIIaIbqOElCXcCCFfsJXcGlV1jbx_yVZCKF0pI5tX7HVKeyGEKeyK_bzkER8IH3mYeN5FxGqkGX2i4K3jD5QgoLMpE_A5jOgSf6S849Zzezg4ApsLyXP4B6X8xGFno4WMkX6cmGMi_4176wP5EX3-nZ6zs8m6hG-e55rdXX_8evW5uv3y6ebq8raC2rS5kgDKjkrKoTFNWw9bK-uh7USrwagOaj2OSusG1FYpuYVmAqPryQyik8bU3VCv2fvT3kMM34-Ycj-Xf9E56zEcU19MdrpudKHXTJ_QIjWliFN_iDTb-FSghdP9vv9jvF-ML3kxXorvnm_YBNZN0Xqg9Let2vKh0Qv34cQVm4v72Ccg9IAjRYTcj4H-d-oXpSydYQ</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Chen, Dao-Long</creator><creator>Yang, Ping-Feng</creator><creator>Lai, Yi-Shao</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20120301</creationdate><title>A review of three-dimensional viscoelastic models with an application to viscoelasticity characterization using nanoindentation</title><author>Chen, Dao-Long ; Yang, Ping-Feng ; Lai, Yi-Shao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-1cc2ad211b47453b8a13b59056c729c36dd2664c282218c4fc763f7b0917739b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Creep (materials)</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fittings</topic><topic>Integrated circuits</topic><topic>Mathematical models</topic><topic>Nanoindentation</topic><topic>Polymethyl methacrylates</topic><topic>Representations</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Three dimensional models</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Dao-Long</creatorcontrib><creatorcontrib>Yang, Ping-Feng</creatorcontrib><creatorcontrib>Lai, Yi-Shao</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microelectronics and reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Dao-Long</au><au>Yang, Ping-Feng</au><au>Lai, Yi-Shao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A review of three-dimensional viscoelastic models with an application to viscoelasticity characterization using nanoindentation</atitle><jtitle>Microelectronics and reliability</jtitle><date>2012-03-01</date><risdate>2012</risdate><volume>52</volume><issue>3</issue><spage>541</spage><epage>558</epage><pages>541-558</pages><issn>0026-2714</issn><eissn>1872-941X</eissn><coden>MCRLAS</coden><abstract>This work reviewed different three-dimensional viscoelastic models, including Hooke, Newton, Maxwell, Voigt, Boltzmann, Zener, Tsay, Burgers, Weichert, and Kelvin models. The relaxation moduli and creep compliances are derived and related via the viscoelastic parameters. Physical meanings of viscoelastic parameters are also explained for each model. The formulae of relaxation test, creep test, and dynamic loading test for each viscoelastic models are formulated. Relaxation moduli and creep compliances are drawn for visualizing and comparing. The less discussed time-dependent Poisson’s ratios are also emphasized and compared in this work. All viscoelastic functions can be represented as the relaxation-creep duality representation. The instantaneous and permanent moduli and compliances as well as the fractions of exponential and complementary exponential pairs with different characteristic times can be immediately understood via the relaxation-creep duality representation. The three-dimensional Burgers model is selected to describe the viscoelastic behavior of PMMA with nanoindentation test. The two-step curve fitting method is introduced to fit the P–t curve and h–t curve separately. The fitting results are better than the direct fitting of P–h curve in the literature. The relaxation moduli and creep compliances can then be used to understand the viscoelastic behavior of PMMA.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.microrel.2011.10.001</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0026-2714
ispartof Microelectronics and reliability, 2012-03, Vol.52 (3), p.541-558
issn 0026-2714
1872-941X
language eng
recordid cdi_proquest_miscellaneous_1019634677
source ScienceDirect Freedom Collection (Elsevier)
subjects Applied sciences
Creep (materials)
Design. Technologies. Operation analysis. Testing
Electronics
Exact sciences and technology
Fittings
Integrated circuits
Mathematical models
Nanoindentation
Polymethyl methacrylates
Representations
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Three dimensional models
Viscoelasticity
title A review of three-dimensional viscoelastic models with an application to viscoelasticity characterization using nanoindentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20review%20of%20three-dimensional%20viscoelastic%20models%20with%20an%20application%20to%20viscoelasticity%20characterization%20using%20nanoindentation&rft.jtitle=Microelectronics%20and%20reliability&rft.au=Chen,%20Dao-Long&rft.date=2012-03-01&rft.volume=52&rft.issue=3&rft.spage=541&rft.epage=558&rft.pages=541-558&rft.issn=0026-2714&rft.eissn=1872-941X&rft.coden=MCRLAS&rft_id=info:doi/10.1016/j.microrel.2011.10.001&rft_dat=%3Cproquest_cross%3E1019634677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019634677&rft_id=info:pmid/&rft_els_id=S0026271411004537&rfr_iscdi=true