A review of three-dimensional viscoelastic models with an application to viscoelasticity characterization using nanoindentation
This work reviewed different three-dimensional viscoelastic models, including Hooke, Newton, Maxwell, Voigt, Boltzmann, Zener, Tsay, Burgers, Weichert, and Kelvin models. The relaxation moduli and creep compliances are derived and related via the viscoelastic parameters. Physical meanings of viscoel...
Gespeichert in:
Veröffentlicht in: | Microelectronics and reliability 2012-03, Vol.52 (3), p.541-558 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 558 |
---|---|
container_issue | 3 |
container_start_page | 541 |
container_title | Microelectronics and reliability |
container_volume | 52 |
creator | Chen, Dao-Long Yang, Ping-Feng Lai, Yi-Shao |
description | This work reviewed different three-dimensional viscoelastic models, including Hooke, Newton, Maxwell, Voigt, Boltzmann, Zener, Tsay, Burgers, Weichert, and Kelvin models. The relaxation moduli and creep compliances are derived and related via the viscoelastic parameters. Physical meanings of viscoelastic parameters are also explained for each model. The formulae of relaxation test, creep test, and dynamic loading test for each viscoelastic models are formulated. Relaxation moduli and creep compliances are drawn for visualizing and comparing. The less discussed time-dependent Poisson’s ratios are also emphasized and compared in this work. All viscoelastic functions can be represented as the relaxation-creep duality representation. The instantaneous and permanent moduli and compliances as well as the fractions of exponential and complementary exponential pairs with different characteristic times can be immediately understood via the relaxation-creep duality representation. The three-dimensional Burgers model is selected to describe the viscoelastic behavior of PMMA with nanoindentation test. The two-step curve fitting method is introduced to fit the P–t curve and h–t curve separately. The fitting results are better than the direct fitting of P–h curve in the literature. The relaxation moduli and creep compliances can then be used to understand the viscoelastic behavior of PMMA. |
doi_str_mv | 10.1016/j.microrel.2011.10.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019634677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0026271411004537</els_id><sourcerecordid>1019634677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-1cc2ad211b47453b8a13b59056c729c36dd2664c282218c4fc763f7b0917739b3</originalsourceid><addsrcrecordid>eNqFkMFq3DAQhkVpoNtNX6HoUujFG0m2pfWtITRtINBLA7kZeTzuziJLW0mbkF766pW7aaGnngZ-vn9m-Bh7K8VGCqkv9puZIIaIbqOElCXcCCFfsJXcGlV1jbx_yVZCKF0pI5tX7HVKeyGEKeyK_bzkER8IH3mYeN5FxGqkGX2i4K3jD5QgoLMpE_A5jOgSf6S849Zzezg4ApsLyXP4B6X8xGFno4WMkX6cmGMi_4176wP5EX3-nZ6zs8m6hG-e55rdXX_8evW5uv3y6ebq8raC2rS5kgDKjkrKoTFNWw9bK-uh7USrwagOaj2OSusG1FYpuYVmAqPryQyik8bU3VCv2fvT3kMM34-Ycj-Xf9E56zEcU19MdrpudKHXTJ_QIjWliFN_iDTb-FSghdP9vv9jvF-ML3kxXorvnm_YBNZN0Xqg9Let2vKh0Qv34cQVm4v72Ccg9IAjRYTcj4H-d-oXpSydYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019634677</pqid></control><display><type>article</type><title>A review of three-dimensional viscoelastic models with an application to viscoelasticity characterization using nanoindentation</title><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Chen, Dao-Long ; Yang, Ping-Feng ; Lai, Yi-Shao</creator><creatorcontrib>Chen, Dao-Long ; Yang, Ping-Feng ; Lai, Yi-Shao</creatorcontrib><description>This work reviewed different three-dimensional viscoelastic models, including Hooke, Newton, Maxwell, Voigt, Boltzmann, Zener, Tsay, Burgers, Weichert, and Kelvin models. The relaxation moduli and creep compliances are derived and related via the viscoelastic parameters. Physical meanings of viscoelastic parameters are also explained for each model. The formulae of relaxation test, creep test, and dynamic loading test for each viscoelastic models are formulated. Relaxation moduli and creep compliances are drawn for visualizing and comparing. The less discussed time-dependent Poisson’s ratios are also emphasized and compared in this work. All viscoelastic functions can be represented as the relaxation-creep duality representation. The instantaneous and permanent moduli and compliances as well as the fractions of exponential and complementary exponential pairs with different characteristic times can be immediately understood via the relaxation-creep duality representation. The three-dimensional Burgers model is selected to describe the viscoelastic behavior of PMMA with nanoindentation test. The two-step curve fitting method is introduced to fit the P–t curve and h–t curve separately. The fitting results are better than the direct fitting of P–h curve in the literature. The relaxation moduli and creep compliances can then be used to understand the viscoelastic behavior of PMMA.</description><identifier>ISSN: 0026-2714</identifier><identifier>EISSN: 1872-941X</identifier><identifier>DOI: 10.1016/j.microrel.2011.10.001</identifier><identifier>CODEN: MCRLAS</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Creep (materials) ; Design. Technologies. Operation analysis. Testing ; Electronics ; Exact sciences and technology ; Fittings ; Integrated circuits ; Mathematical models ; Nanoindentation ; Polymethyl methacrylates ; Representations ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Three dimensional models ; Viscoelasticity</subject><ispartof>Microelectronics and reliability, 2012-03, Vol.52 (3), p.541-558</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-1cc2ad211b47453b8a13b59056c729c36dd2664c282218c4fc763f7b0917739b3</citedby><cites>FETCH-LOGICAL-c375t-1cc2ad211b47453b8a13b59056c729c36dd2664c282218c4fc763f7b0917739b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.microrel.2011.10.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25664761$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Dao-Long</creatorcontrib><creatorcontrib>Yang, Ping-Feng</creatorcontrib><creatorcontrib>Lai, Yi-Shao</creatorcontrib><title>A review of three-dimensional viscoelastic models with an application to viscoelasticity characterization using nanoindentation</title><title>Microelectronics and reliability</title><description>This work reviewed different three-dimensional viscoelastic models, including Hooke, Newton, Maxwell, Voigt, Boltzmann, Zener, Tsay, Burgers, Weichert, and Kelvin models. The relaxation moduli and creep compliances are derived and related via the viscoelastic parameters. Physical meanings of viscoelastic parameters are also explained for each model. The formulae of relaxation test, creep test, and dynamic loading test for each viscoelastic models are formulated. Relaxation moduli and creep compliances are drawn for visualizing and comparing. The less discussed time-dependent Poisson’s ratios are also emphasized and compared in this work. All viscoelastic functions can be represented as the relaxation-creep duality representation. The instantaneous and permanent moduli and compliances as well as the fractions of exponential and complementary exponential pairs with different characteristic times can be immediately understood via the relaxation-creep duality representation. The three-dimensional Burgers model is selected to describe the viscoelastic behavior of PMMA with nanoindentation test. The two-step curve fitting method is introduced to fit the P–t curve and h–t curve separately. The fitting results are better than the direct fitting of P–h curve in the literature. The relaxation moduli and creep compliances can then be used to understand the viscoelastic behavior of PMMA.</description><subject>Applied sciences</subject><subject>Creep (materials)</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fittings</subject><subject>Integrated circuits</subject><subject>Mathematical models</subject><subject>Nanoindentation</subject><subject>Polymethyl methacrylates</subject><subject>Representations</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Three dimensional models</subject><subject>Viscoelasticity</subject><issn>0026-2714</issn><issn>1872-941X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkMFq3DAQhkVpoNtNX6HoUujFG0m2pfWtITRtINBLA7kZeTzuziJLW0mbkF766pW7aaGnngZ-vn9m-Bh7K8VGCqkv9puZIIaIbqOElCXcCCFfsJXcGlV1jbx_yVZCKF0pI5tX7HVKeyGEKeyK_bzkER8IH3mYeN5FxGqkGX2i4K3jD5QgoLMpE_A5jOgSf6S849Zzezg4ApsLyXP4B6X8xGFno4WMkX6cmGMi_4176wP5EX3-nZ6zs8m6hG-e55rdXX_8evW5uv3y6ebq8raC2rS5kgDKjkrKoTFNWw9bK-uh7USrwagOaj2OSusG1FYpuYVmAqPryQyik8bU3VCv2fvT3kMM34-Ycj-Xf9E56zEcU19MdrpudKHXTJ_QIjWliFN_iDTb-FSghdP9vv9jvF-ML3kxXorvnm_YBNZN0Xqg9Let2vKh0Qv34cQVm4v72Ccg9IAjRYTcj4H-d-oXpSydYQ</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Chen, Dao-Long</creator><creator>Yang, Ping-Feng</creator><creator>Lai, Yi-Shao</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20120301</creationdate><title>A review of three-dimensional viscoelastic models with an application to viscoelasticity characterization using nanoindentation</title><author>Chen, Dao-Long ; Yang, Ping-Feng ; Lai, Yi-Shao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-1cc2ad211b47453b8a13b59056c729c36dd2664c282218c4fc763f7b0917739b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Creep (materials)</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fittings</topic><topic>Integrated circuits</topic><topic>Mathematical models</topic><topic>Nanoindentation</topic><topic>Polymethyl methacrylates</topic><topic>Representations</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Three dimensional models</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Dao-Long</creatorcontrib><creatorcontrib>Yang, Ping-Feng</creatorcontrib><creatorcontrib>Lai, Yi-Shao</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microelectronics and reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Dao-Long</au><au>Yang, Ping-Feng</au><au>Lai, Yi-Shao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A review of three-dimensional viscoelastic models with an application to viscoelasticity characterization using nanoindentation</atitle><jtitle>Microelectronics and reliability</jtitle><date>2012-03-01</date><risdate>2012</risdate><volume>52</volume><issue>3</issue><spage>541</spage><epage>558</epage><pages>541-558</pages><issn>0026-2714</issn><eissn>1872-941X</eissn><coden>MCRLAS</coden><abstract>This work reviewed different three-dimensional viscoelastic models, including Hooke, Newton, Maxwell, Voigt, Boltzmann, Zener, Tsay, Burgers, Weichert, and Kelvin models. The relaxation moduli and creep compliances are derived and related via the viscoelastic parameters. Physical meanings of viscoelastic parameters are also explained for each model. The formulae of relaxation test, creep test, and dynamic loading test for each viscoelastic models are formulated. Relaxation moduli and creep compliances are drawn for visualizing and comparing. The less discussed time-dependent Poisson’s ratios are also emphasized and compared in this work. All viscoelastic functions can be represented as the relaxation-creep duality representation. The instantaneous and permanent moduli and compliances as well as the fractions of exponential and complementary exponential pairs with different characteristic times can be immediately understood via the relaxation-creep duality representation. The three-dimensional Burgers model is selected to describe the viscoelastic behavior of PMMA with nanoindentation test. The two-step curve fitting method is introduced to fit the P–t curve and h–t curve separately. The fitting results are better than the direct fitting of P–h curve in the literature. The relaxation moduli and creep compliances can then be used to understand the viscoelastic behavior of PMMA.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.microrel.2011.10.001</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-2714 |
ispartof | Microelectronics and reliability, 2012-03, Vol.52 (3), p.541-558 |
issn | 0026-2714 1872-941X |
language | eng |
recordid | cdi_proquest_miscellaneous_1019634677 |
source | ScienceDirect Freedom Collection (Elsevier) |
subjects | Applied sciences Creep (materials) Design. Technologies. Operation analysis. Testing Electronics Exact sciences and technology Fittings Integrated circuits Mathematical models Nanoindentation Polymethyl methacrylates Representations Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Three dimensional models Viscoelasticity |
title | A review of three-dimensional viscoelastic models with an application to viscoelasticity characterization using nanoindentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20review%20of%20three-dimensional%20viscoelastic%20models%20with%20an%20application%20to%20viscoelasticity%20characterization%20using%20nanoindentation&rft.jtitle=Microelectronics%20and%20reliability&rft.au=Chen,%20Dao-Long&rft.date=2012-03-01&rft.volume=52&rft.issue=3&rft.spage=541&rft.epage=558&rft.pages=541-558&rft.issn=0026-2714&rft.eissn=1872-941X&rft.coden=MCRLAS&rft_id=info:doi/10.1016/j.microrel.2011.10.001&rft_dat=%3Cproquest_cross%3E1019634677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019634677&rft_id=info:pmid/&rft_els_id=S0026271411004537&rfr_iscdi=true |