The effect of prediction error correlation on optimal sensor placement in structural dynamics

The problem of estimating the optimal sensor locations for parameter estimation in structural dynamics is re-visited. The effect of spatially correlated prediction errors on the optimal sensor placement is investigated. The information entropy is used as a performance measure of the sensor configura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanical systems and signal processing 2012-04, Vol.28, p.105-127
Hauptverfasser: Papadimitriou, Costas, Lombaert, Geert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127
container_issue
container_start_page 105
container_title Mechanical systems and signal processing
container_volume 28
creator Papadimitriou, Costas
Lombaert, Geert
description The problem of estimating the optimal sensor locations for parameter estimation in structural dynamics is re-visited. The effect of spatially correlated prediction errors on the optimal sensor placement is investigated. The information entropy is used as a performance measure of the sensor configuration. The optimal sensor location is formulated as an optimization problem involving discrete-valued variables, which is solved using computationally efficient sequential sensor placement algorithms. Asymptotic estimates for the information entropy are used to develop useful properties that provide insight into the dependence of the information entropy on the number and location of sensors. A theoretical analysis shows that the spatial correlation length of the prediction errors controls the minimum distance between the sensors and should be taken into account when designing optimal sensor locations with potential sensor distances up to the order of the characteristic length of the dynamic problem considered. Implementation issues for modal identification and structural-related model parameter estimation are addressed. Theoretical and computational developments are illustrated by designing the optimal sensor configurations for a continuous beam model, a discrete chain-like stiffness–mass model and a finite element model of a footbridge in Wetteren (Belgium). Results point out the crucial effect the spatial correlation of the prediction errors have on the design of optimal sensor locations for structural dynamics applications, revealing simultaneously potential inadequacies of spatially uncorrelated prediction errors models. ► Theoretical developments providing insight into the effect of spatial prediction error correlation on sensor placement. ► The spatial correlation length controls the minimum distance between the sensors. ► Spatial correlation avoids redundant information from neighboring sensors. ► Spatial correlation is important to consider in dense finite element meshes. ► Use spatially uncorrelated models for measurements/sensors providing qualitatively different information.
doi_str_mv 10.1016/j.ymssp.2011.05.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019633552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327011002214</els_id><sourcerecordid>1019633552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-4c55e9a96fb89228adecc1706d4a4541ea2542e93d7e94c5ae2a42714ed3c5373</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Ai85emnNd5uDBxG_YMHLepQQ0ylmaZuaZIX992Z3PQsDAzPPOzAPQteU1JRQdbupd2NKc80IpTWRNaH6BC0o0aqijKpTtCBt21acNeQcXaS0IYRoQdQCfay_AEPfg8s49HiO0HmXfZgwxBgidiFGGOxhsq85-9EOOMGUynYerIMRpoz9hFOOW5e3say73WRH79IlOuvtkODqry_R-9Pj-uGlWr09vz7cryrHucqVcFKCtlr1n61mrLUdOEcbojphhRQULJOCgeZdA7rAFpgVrKECOu4kb_gS3RzvzjF8byFlM_rkYBjsBGGbTJGkFedSsoLyI-piSClCb-ZYXoq7Au05ZTbmINPsZRoiTcmW1N0xBeWLHw_RJOdhcsVWLOpMF_y_-V-Yj4B_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019633552</pqid></control><display><type>article</type><title>The effect of prediction error correlation on optimal sensor placement in structural dynamics</title><source>Elsevier ScienceDirect Journals</source><creator>Papadimitriou, Costas ; Lombaert, Geert</creator><creatorcontrib>Papadimitriou, Costas ; Lombaert, Geert</creatorcontrib><description>The problem of estimating the optimal sensor locations for parameter estimation in structural dynamics is re-visited. The effect of spatially correlated prediction errors on the optimal sensor placement is investigated. The information entropy is used as a performance measure of the sensor configuration. The optimal sensor location is formulated as an optimization problem involving discrete-valued variables, which is solved using computationally efficient sequential sensor placement algorithms. Asymptotic estimates for the information entropy are used to develop useful properties that provide insight into the dependence of the information entropy on the number and location of sensors. A theoretical analysis shows that the spatial correlation length of the prediction errors controls the minimum distance between the sensors and should be taken into account when designing optimal sensor locations with potential sensor distances up to the order of the characteristic length of the dynamic problem considered. Implementation issues for modal identification and structural-related model parameter estimation are addressed. Theoretical and computational developments are illustrated by designing the optimal sensor configurations for a continuous beam model, a discrete chain-like stiffness–mass model and a finite element model of a footbridge in Wetteren (Belgium). Results point out the crucial effect the spatial correlation of the prediction errors have on the design of optimal sensor locations for structural dynamics applications, revealing simultaneously potential inadequacies of spatially uncorrelated prediction errors models. ► Theoretical developments providing insight into the effect of spatial prediction error correlation on sensor placement. ► The spatial correlation length controls the minimum distance between the sensors. ► Spatial correlation avoids redundant information from neighboring sensors. ► Spatial correlation is important to consider in dense finite element meshes. ► Use spatially uncorrelated models for measurements/sensors providing qualitatively different information.</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2011.05.019</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Correlation ; Dynamics ; Entropy ; Error detection ; Information entropy ; Mathematical analysis ; Mathematical models ; Modal identification ; Model updating ; Optimal sensor placement ; Optimization ; Parameter estimation ; Sensors ; Vibration testing</subject><ispartof>Mechanical systems and signal processing, 2012-04, Vol.28, p.105-127</ispartof><rights>2011 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-4c55e9a96fb89228adecc1706d4a4541ea2542e93d7e94c5ae2a42714ed3c5373</citedby><cites>FETCH-LOGICAL-c336t-4c55e9a96fb89228adecc1706d4a4541ea2542e93d7e94c5ae2a42714ed3c5373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymssp.2011.05.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Papadimitriou, Costas</creatorcontrib><creatorcontrib>Lombaert, Geert</creatorcontrib><title>The effect of prediction error correlation on optimal sensor placement in structural dynamics</title><title>Mechanical systems and signal processing</title><description>The problem of estimating the optimal sensor locations for parameter estimation in structural dynamics is re-visited. The effect of spatially correlated prediction errors on the optimal sensor placement is investigated. The information entropy is used as a performance measure of the sensor configuration. The optimal sensor location is formulated as an optimization problem involving discrete-valued variables, which is solved using computationally efficient sequential sensor placement algorithms. Asymptotic estimates for the information entropy are used to develop useful properties that provide insight into the dependence of the information entropy on the number and location of sensors. A theoretical analysis shows that the spatial correlation length of the prediction errors controls the minimum distance between the sensors and should be taken into account when designing optimal sensor locations with potential sensor distances up to the order of the characteristic length of the dynamic problem considered. Implementation issues for modal identification and structural-related model parameter estimation are addressed. Theoretical and computational developments are illustrated by designing the optimal sensor configurations for a continuous beam model, a discrete chain-like stiffness–mass model and a finite element model of a footbridge in Wetteren (Belgium). Results point out the crucial effect the spatial correlation of the prediction errors have on the design of optimal sensor locations for structural dynamics applications, revealing simultaneously potential inadequacies of spatially uncorrelated prediction errors models. ► Theoretical developments providing insight into the effect of spatial prediction error correlation on sensor placement. ► The spatial correlation length controls the minimum distance between the sensors. ► Spatial correlation avoids redundant information from neighboring sensors. ► Spatial correlation is important to consider in dense finite element meshes. ► Use spatially uncorrelated models for measurements/sensors providing qualitatively different information.</description><subject>Correlation</subject><subject>Dynamics</subject><subject>Entropy</subject><subject>Error detection</subject><subject>Information entropy</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Modal identification</subject><subject>Model updating</subject><subject>Optimal sensor placement</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Sensors</subject><subject>Vibration testing</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Ai85emnNd5uDBxG_YMHLepQQ0ylmaZuaZIX992Z3PQsDAzPPOzAPQteU1JRQdbupd2NKc80IpTWRNaH6BC0o0aqijKpTtCBt21acNeQcXaS0IYRoQdQCfay_AEPfg8s49HiO0HmXfZgwxBgidiFGGOxhsq85-9EOOMGUynYerIMRpoz9hFOOW5e3say73WRH79IlOuvtkODqry_R-9Pj-uGlWr09vz7cryrHucqVcFKCtlr1n61mrLUdOEcbojphhRQULJOCgeZdA7rAFpgVrKECOu4kb_gS3RzvzjF8byFlM_rkYBjsBGGbTJGkFedSsoLyI-piSClCb-ZYXoq7Au05ZTbmINPsZRoiTcmW1N0xBeWLHw_RJOdhcsVWLOpMF_y_-V-Yj4B_</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Papadimitriou, Costas</creator><creator>Lombaert, Geert</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201204</creationdate><title>The effect of prediction error correlation on optimal sensor placement in structural dynamics</title><author>Papadimitriou, Costas ; Lombaert, Geert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-4c55e9a96fb89228adecc1706d4a4541ea2542e93d7e94c5ae2a42714ed3c5373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Correlation</topic><topic>Dynamics</topic><topic>Entropy</topic><topic>Error detection</topic><topic>Information entropy</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Modal identification</topic><topic>Model updating</topic><topic>Optimal sensor placement</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Sensors</topic><topic>Vibration testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papadimitriou, Costas</creatorcontrib><creatorcontrib>Lombaert, Geert</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papadimitriou, Costas</au><au>Lombaert, Geert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of prediction error correlation on optimal sensor placement in structural dynamics</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2012-04</date><risdate>2012</risdate><volume>28</volume><spage>105</spage><epage>127</epage><pages>105-127</pages><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>The problem of estimating the optimal sensor locations for parameter estimation in structural dynamics is re-visited. The effect of spatially correlated prediction errors on the optimal sensor placement is investigated. The information entropy is used as a performance measure of the sensor configuration. The optimal sensor location is formulated as an optimization problem involving discrete-valued variables, which is solved using computationally efficient sequential sensor placement algorithms. Asymptotic estimates for the information entropy are used to develop useful properties that provide insight into the dependence of the information entropy on the number and location of sensors. A theoretical analysis shows that the spatial correlation length of the prediction errors controls the minimum distance between the sensors and should be taken into account when designing optimal sensor locations with potential sensor distances up to the order of the characteristic length of the dynamic problem considered. Implementation issues for modal identification and structural-related model parameter estimation are addressed. Theoretical and computational developments are illustrated by designing the optimal sensor configurations for a continuous beam model, a discrete chain-like stiffness–mass model and a finite element model of a footbridge in Wetteren (Belgium). Results point out the crucial effect the spatial correlation of the prediction errors have on the design of optimal sensor locations for structural dynamics applications, revealing simultaneously potential inadequacies of spatially uncorrelated prediction errors models. ► Theoretical developments providing insight into the effect of spatial prediction error correlation on sensor placement. ► The spatial correlation length controls the minimum distance between the sensors. ► Spatial correlation avoids redundant information from neighboring sensors. ► Spatial correlation is important to consider in dense finite element meshes. ► Use spatially uncorrelated models for measurements/sensors providing qualitatively different information.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2011.05.019</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-3270
ispartof Mechanical systems and signal processing, 2012-04, Vol.28, p.105-127
issn 0888-3270
1096-1216
language eng
recordid cdi_proquest_miscellaneous_1019633552
source Elsevier ScienceDirect Journals
subjects Correlation
Dynamics
Entropy
Error detection
Information entropy
Mathematical analysis
Mathematical models
Modal identification
Model updating
Optimal sensor placement
Optimization
Parameter estimation
Sensors
Vibration testing
title The effect of prediction error correlation on optimal sensor placement in structural dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A20%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20prediction%20error%20correlation%20on%20optimal%20sensor%20placement%20in%20structural%20dynamics&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Papadimitriou,%20Costas&rft.date=2012-04&rft.volume=28&rft.spage=105&rft.epage=127&rft.pages=105-127&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2011.05.019&rft_dat=%3Cproquest_cross%3E1019633552%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019633552&rft_id=info:pmid/&rft_els_id=S0888327011002214&rfr_iscdi=true