Self-assembly of free-standing graphene nano-ribbons
We performed molecular dynamics (MD) simulations to investigate the self-assembly of a free-standing graphene nano-ribbon (GNR). It was found that the kinetic pathway of a GNR is dictated by both the complex energy landscape, which drives the GNR towards a low energy regular conformation, and the fo...
Gespeichert in:
Veröffentlicht in: | Physics letters. A 2012-02, Vol.376 (8-9), p.973-977 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 977 |
---|---|
container_issue | 8-9 |
container_start_page | 973 |
container_title | Physics letters. A |
container_volume | 376 |
creator | Pang, Andrew Li Jian Sorkin, Viacheslav Zhang, Yong-Wei Srolovitz, David J. |
description | We performed molecular dynamics (MD) simulations to investigate the self-assembly of a free-standing graphene nano-ribbon (GNR). It was found that the kinetic pathway of a GNR is dictated by both the complex energy landscape, which drives the GNR towards a low energy regular conformation, and the formation of locking frustrations, which traps the GNR at a metastable state with an irregular conformation. For an initially planar GNR, we observed a regularly folded conformation over a finite range of GNR lengths. Using an energy minimization approach, we were able to predict the number of folds in this regularly folded conformation.
► Explored the evolutionary kinetic pathway of a GNR during self-assembly. ► Observed that locking frustration traps the GNR in a local energy minima. ► Identified several distinctive conformation zones for initially planar GNR. ► Interestingly, one conformation zone is that of a regularly folded conformation. ► Performed thermodynamics analysis on the GNR self-assembled conformation. |
doi_str_mv | 10.1016/j.physleta.2011.12.039 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019632743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0375960111015052</els_id><sourcerecordid>1019632743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-fa5ab16378bcfb16125a79bcfc1172ca2de79efb7e2114c6625dc427e5d1ca403</originalsourceid><addsrcrecordid>eNqFkD1PwzAYhC0EEuXjL6CMLA5-7cRuNlDFl1SJAZgtx3ndukqdYKdI_fe4KsxMd8NzJ90RcgOsBAbyblOO633qcTIlZwAl8JKJ5oTMYK4E5RVvTsmMCVXTRjI4JxcpbRjLSdbMSPWOvaMmJdy2_b4YXOEiIk2TCZ0Pq2IVzbjGgEUwYaDRt-0Q0hU5c6ZPeP2rl-Tz6fFj8UKXb8-vi4cltaKqJ-pMbVqQQs1b67IBXhvVZG8BFLeGd6gadK1CDlBZKXnd2YorrDuwpmLiktwee8c4fO0wTXrrk8W-NwGHXdJ5fiMFV5XIqDyiNg4pRXR6jH5r4j5DB07qjf67SR9u0sB1vikH749BzEO-PUadrMdgsfMR7aS7wf9X8QNurXSn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019632743</pqid></control><display><type>article</type><title>Self-assembly of free-standing graphene nano-ribbons</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Pang, Andrew Li Jian ; Sorkin, Viacheslav ; Zhang, Yong-Wei ; Srolovitz, David J.</creator><creatorcontrib>Pang, Andrew Li Jian ; Sorkin, Viacheslav ; Zhang, Yong-Wei ; Srolovitz, David J.</creatorcontrib><description>We performed molecular dynamics (MD) simulations to investigate the self-assembly of a free-standing graphene nano-ribbon (GNR). It was found that the kinetic pathway of a GNR is dictated by both the complex energy landscape, which drives the GNR towards a low energy regular conformation, and the formation of locking frustrations, which traps the GNR at a metastable state with an irregular conformation. For an initially planar GNR, we observed a regularly folded conformation over a finite range of GNR lengths. Using an energy minimization approach, we were able to predict the number of folds in this regularly folded conformation.
► Explored the evolutionary kinetic pathway of a GNR during self-assembly. ► Observed that locking frustration traps the GNR in a local energy minima. ► Identified several distinctive conformation zones for initially planar GNR. ► Interestingly, one conformation zone is that of a regularly folded conformation. ► Performed thermodynamics analysis on the GNR self-assembled conformation.</description><identifier>ISSN: 0375-9601</identifier><identifier>EISSN: 1873-2429</identifier><identifier>DOI: 10.1016/j.physleta.2011.12.039</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Folding structure ; Graphene ; Graphene nano-ribbon ; Landscapes ; Low energy ; Molecular dynamics ; Nanocomposites ; Nanomaterials ; Nanostructure ; Self assembly</subject><ispartof>Physics letters. A, 2012-02, Vol.376 (8-9), p.973-977</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-fa5ab16378bcfb16125a79bcfc1172ca2de79efb7e2114c6625dc427e5d1ca403</citedby><cites>FETCH-LOGICAL-c345t-fa5ab16378bcfb16125a79bcfc1172ca2de79efb7e2114c6625dc427e5d1ca403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0375960111015052$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Pang, Andrew Li Jian</creatorcontrib><creatorcontrib>Sorkin, Viacheslav</creatorcontrib><creatorcontrib>Zhang, Yong-Wei</creatorcontrib><creatorcontrib>Srolovitz, David J.</creatorcontrib><title>Self-assembly of free-standing graphene nano-ribbons</title><title>Physics letters. A</title><description>We performed molecular dynamics (MD) simulations to investigate the self-assembly of a free-standing graphene nano-ribbon (GNR). It was found that the kinetic pathway of a GNR is dictated by both the complex energy landscape, which drives the GNR towards a low energy regular conformation, and the formation of locking frustrations, which traps the GNR at a metastable state with an irregular conformation. For an initially planar GNR, we observed a regularly folded conformation over a finite range of GNR lengths. Using an energy minimization approach, we were able to predict the number of folds in this regularly folded conformation.
► Explored the evolutionary kinetic pathway of a GNR during self-assembly. ► Observed that locking frustration traps the GNR in a local energy minima. ► Identified several distinctive conformation zones for initially planar GNR. ► Interestingly, one conformation zone is that of a regularly folded conformation. ► Performed thermodynamics analysis on the GNR self-assembled conformation.</description><subject>Folding structure</subject><subject>Graphene</subject><subject>Graphene nano-ribbon</subject><subject>Landscapes</subject><subject>Low energy</subject><subject>Molecular dynamics</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Self assembly</subject><issn>0375-9601</issn><issn>1873-2429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAYhC0EEuXjL6CMLA5-7cRuNlDFl1SJAZgtx3ndukqdYKdI_fe4KsxMd8NzJ90RcgOsBAbyblOO633qcTIlZwAl8JKJ5oTMYK4E5RVvTsmMCVXTRjI4JxcpbRjLSdbMSPWOvaMmJdy2_b4YXOEiIk2TCZ0Pq2IVzbjGgEUwYaDRt-0Q0hU5c6ZPeP2rl-Tz6fFj8UKXb8-vi4cltaKqJ-pMbVqQQs1b67IBXhvVZG8BFLeGd6gadK1CDlBZKXnd2YorrDuwpmLiktwee8c4fO0wTXrrk8W-NwGHXdJ5fiMFV5XIqDyiNg4pRXR6jH5r4j5DB07qjf67SR9u0sB1vikH749BzEO-PUadrMdgsfMR7aS7wf9X8QNurXSn</recordid><startdate>20120206</startdate><enddate>20120206</enddate><creator>Pang, Andrew Li Jian</creator><creator>Sorkin, Viacheslav</creator><creator>Zhang, Yong-Wei</creator><creator>Srolovitz, David J.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120206</creationdate><title>Self-assembly of free-standing graphene nano-ribbons</title><author>Pang, Andrew Li Jian ; Sorkin, Viacheslav ; Zhang, Yong-Wei ; Srolovitz, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-fa5ab16378bcfb16125a79bcfc1172ca2de79efb7e2114c6625dc427e5d1ca403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Folding structure</topic><topic>Graphene</topic><topic>Graphene nano-ribbon</topic><topic>Landscapes</topic><topic>Low energy</topic><topic>Molecular dynamics</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Self assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pang, Andrew Li Jian</creatorcontrib><creatorcontrib>Sorkin, Viacheslav</creatorcontrib><creatorcontrib>Zhang, Yong-Wei</creatorcontrib><creatorcontrib>Srolovitz, David J.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics letters. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pang, Andrew Li Jian</au><au>Sorkin, Viacheslav</au><au>Zhang, Yong-Wei</au><au>Srolovitz, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-assembly of free-standing graphene nano-ribbons</atitle><jtitle>Physics letters. A</jtitle><date>2012-02-06</date><risdate>2012</risdate><volume>376</volume><issue>8-9</issue><spage>973</spage><epage>977</epage><pages>973-977</pages><issn>0375-9601</issn><eissn>1873-2429</eissn><abstract>We performed molecular dynamics (MD) simulations to investigate the self-assembly of a free-standing graphene nano-ribbon (GNR). It was found that the kinetic pathway of a GNR is dictated by both the complex energy landscape, which drives the GNR towards a low energy regular conformation, and the formation of locking frustrations, which traps the GNR at a metastable state with an irregular conformation. For an initially planar GNR, we observed a regularly folded conformation over a finite range of GNR lengths. Using an energy minimization approach, we were able to predict the number of folds in this regularly folded conformation.
► Explored the evolutionary kinetic pathway of a GNR during self-assembly. ► Observed that locking frustration traps the GNR in a local energy minima. ► Identified several distinctive conformation zones for initially planar GNR. ► Interestingly, one conformation zone is that of a regularly folded conformation. ► Performed thermodynamics analysis on the GNR self-assembled conformation.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physleta.2011.12.039</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0375-9601 |
ispartof | Physics letters. A, 2012-02, Vol.376 (8-9), p.973-977 |
issn | 0375-9601 1873-2429 |
language | eng |
recordid | cdi_proquest_miscellaneous_1019632743 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Folding structure Graphene Graphene nano-ribbon Landscapes Low energy Molecular dynamics Nanocomposites Nanomaterials Nanostructure Self assembly |
title | Self-assembly of free-standing graphene nano-ribbons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A58%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-assembly%20of%20free-standing%20graphene%20nano-ribbons&rft.jtitle=Physics%20letters.%20A&rft.au=Pang,%20Andrew%20Li%20Jian&rft.date=2012-02-06&rft.volume=376&rft.issue=8-9&rft.spage=973&rft.epage=977&rft.pages=973-977&rft.issn=0375-9601&rft.eissn=1873-2429&rft_id=info:doi/10.1016/j.physleta.2011.12.039&rft_dat=%3Cproquest_cross%3E1019632743%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019632743&rft_id=info:pmid/&rft_els_id=S0375960111015052&rfr_iscdi=true |