A fuzzy goal programming and meta heuristic algorithms for solving integrated production: distribution planning problem

Integrated production–distribution planning is one of the most important issues in supply chain management (SCM). We consider a supply chain (SC) network to consist of a manufacturer, with multiple plants, products, distribution centers (DCs), retailers and customers. A multi-objective linear progra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Central European journal of operations research 2011-12, Vol.19 (4), p.547-569
Hauptverfasser: Jolai, F., Razmi, J., Rostami, N. K. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 569
container_issue 4
container_start_page 547
container_title Central European journal of operations research
container_volume 19
creator Jolai, F.
Razmi, J.
Rostami, N. K. M.
description Integrated production–distribution planning is one of the most important issues in supply chain management (SCM). We consider a supply chain (SC) network to consist of a manufacturer, with multiple plants, products, distribution centers (DCs), retailers and customers. A multi-objective linear programming problem for integrating production–distribution, which considers various simultaneously conflicting objectives, is developed. The decision maker’s imprecise aspiration levels of goals are incorporated into the model using a fuzzy goal programming approach. Due to complexity of the considered problem we propose three meta-heuristics to tackle the problem. A simple genetic algorithm and a particle swarm optimization (PSO) algorithm with a new fitness function, and an improved hybrid genetic algorithm are developed. In order to show the efficiency of the proposed methods, two classes of problems are considered and their instances are solved using all methods. The obtained results show that the improved hybrid genetic algorithm gives us the best solutions in a reasonable computational time.
doi_str_mv 10.1007/s10100-010-0144-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019630290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A713047463</galeid><sourcerecordid>A713047463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-4ac204226671f72916fc8581552324e6e9166c531abaf24d955eaaa53c413a3e3</originalsourceid><addsrcrecordid>eNp1kU-L1jAQxosouK5-AG_Bkwe75l_TxtvLsrrCghcFbyFvmvbN0iavmUTZ_fROqSAIHjIzCb9nZsjTNK8ZvWKU9u-BUcwtBjxStvpJc8EUE61m_fAUaym6lkv1_XnzAuCeUs40VRfNrwOZ6uPjA5mTXcg5pznbdQ1xJjaOZPXFkpOvOUAJjthlTjmU0wpkSplAWn5uZIjFo6z4cWswVldCih_IiKIcjnW7kfNiY9xgJI6LX182zya7gH_1J1823z7efL2-be--fPp8fbhrnexZaaV1nErOlerZ1HPN1OSGbmBdxwWXXnl8Ua4TzB7txOWou85bazvhJBNWeHHZvN374twf1UMxawDnF1zHpwoGv00rQbmmiL75B71PNUfczmhKBz3wXiD0bodmu3hzrBCiBwwQ5lOB2VYAc-iZoLKXasPZjrucALKfzDmH1eYHHGw248xunMFgNuOMRg3fNYBsnH3-u8f_Rb8BC0ScRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>900898273</pqid></control><display><type>article</type><title>A fuzzy goal programming and meta heuristic algorithms for solving integrated production: distribution planning problem</title><source>SpringerLink Journals</source><source>Business Source Complete</source><creator>Jolai, F. ; Razmi, J. ; Rostami, N. K. M.</creator><creatorcontrib>Jolai, F. ; Razmi, J. ; Rostami, N. K. M.</creatorcontrib><description>Integrated production–distribution planning is one of the most important issues in supply chain management (SCM). We consider a supply chain (SC) network to consist of a manufacturer, with multiple plants, products, distribution centers (DCs), retailers and customers. A multi-objective linear programming problem for integrating production–distribution, which considers various simultaneously conflicting objectives, is developed. The decision maker’s imprecise aspiration levels of goals are incorporated into the model using a fuzzy goal programming approach. Due to complexity of the considered problem we propose three meta-heuristics to tackle the problem. A simple genetic algorithm and a particle swarm optimization (PSO) algorithm with a new fitness function, and an improved hybrid genetic algorithm are developed. In order to show the efficiency of the proposed methods, two classes of problems are considered and their instances are solved using all methods. The obtained results show that the improved hybrid genetic algorithm gives us the best solutions in a reasonable computational time.</description><identifier>ISSN: 1435-246X</identifier><identifier>EISSN: 1613-9178</identifier><identifier>DOI: 10.1007/s10100-010-0144-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algorithms ; Analysis ; Business and Management ; Collaboration ; Decision making ; Design ; Fuzzy ; Fuzzy logic ; Fuzzy set theory ; Fuzzy sets ; Genetic algorithms ; Goal programming ; Heuristic ; Heuristic methods ; Integer programming ; Inventory ; Linear programming ; Literature reviews ; Logistics ; Mathematical models ; Mathematical optimization ; Mathematical programming ; Objectives ; Operations research ; Operations Research/Decision Theory ; Optimization ; Original Paper ; Planning ; Production capacity ; Production planning ; Retail stores ; Suppliers ; Supply chain management ; Supply chains ; Systems design</subject><ispartof>Central European journal of operations research, 2011-12, Vol.19 (4), p.547-569</ispartof><rights>Springer-Verlag 2010</rights><rights>COPYRIGHT 2011 Springer</rights><rights>Springer-Verlag 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-4ac204226671f72916fc8581552324e6e9166c531abaf24d955eaaa53c413a3e3</citedby><cites>FETCH-LOGICAL-c471t-4ac204226671f72916fc8581552324e6e9166c531abaf24d955eaaa53c413a3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10100-010-0144-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10100-010-0144-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Jolai, F.</creatorcontrib><creatorcontrib>Razmi, J.</creatorcontrib><creatorcontrib>Rostami, N. K. M.</creatorcontrib><title>A fuzzy goal programming and meta heuristic algorithms for solving integrated production: distribution planning problem</title><title>Central European journal of operations research</title><addtitle>Cent Eur J Oper Res</addtitle><description>Integrated production–distribution planning is one of the most important issues in supply chain management (SCM). We consider a supply chain (SC) network to consist of a manufacturer, with multiple plants, products, distribution centers (DCs), retailers and customers. A multi-objective linear programming problem for integrating production–distribution, which considers various simultaneously conflicting objectives, is developed. The decision maker’s imprecise aspiration levels of goals are incorporated into the model using a fuzzy goal programming approach. Due to complexity of the considered problem we propose three meta-heuristics to tackle the problem. A simple genetic algorithm and a particle swarm optimization (PSO) algorithm with a new fitness function, and an improved hybrid genetic algorithm are developed. In order to show the efficiency of the proposed methods, two classes of problems are considered and their instances are solved using all methods. The obtained results show that the improved hybrid genetic algorithm gives us the best solutions in a reasonable computational time.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Business and Management</subject><subject>Collaboration</subject><subject>Decision making</subject><subject>Design</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Fuzzy sets</subject><subject>Genetic algorithms</subject><subject>Goal programming</subject><subject>Heuristic</subject><subject>Heuristic methods</subject><subject>Integer programming</subject><subject>Inventory</subject><subject>Linear programming</subject><subject>Literature reviews</subject><subject>Logistics</subject><subject>Mathematical models</subject><subject>Mathematical optimization</subject><subject>Mathematical programming</subject><subject>Objectives</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Planning</subject><subject>Production capacity</subject><subject>Production planning</subject><subject>Retail stores</subject><subject>Suppliers</subject><subject>Supply chain management</subject><subject>Supply chains</subject><subject>Systems design</subject><issn>1435-246X</issn><issn>1613-9178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kU-L1jAQxosouK5-AG_Bkwe75l_TxtvLsrrCghcFbyFvmvbN0iavmUTZ_fROqSAIHjIzCb9nZsjTNK8ZvWKU9u-BUcwtBjxStvpJc8EUE61m_fAUaym6lkv1_XnzAuCeUs40VRfNrwOZ6uPjA5mTXcg5pznbdQ1xJjaOZPXFkpOvOUAJjthlTjmU0wpkSplAWn5uZIjFo6z4cWswVldCih_IiKIcjnW7kfNiY9xgJI6LX182zya7gH_1J1823z7efL2-be--fPp8fbhrnexZaaV1nErOlerZ1HPN1OSGbmBdxwWXXnl8Ua4TzB7txOWou85bazvhJBNWeHHZvN374twf1UMxawDnF1zHpwoGv00rQbmmiL75B71PNUfczmhKBz3wXiD0bodmu3hzrBCiBwwQ5lOB2VYAc-iZoLKXasPZjrucALKfzDmH1eYHHGw248xunMFgNuOMRg3fNYBsnH3-u8f_Rb8BC0ScRA</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Jolai, F.</creator><creator>Razmi, J.</creator><creator>Rostami, N. K. M.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7TA</scope><scope>JG9</scope></search><sort><creationdate>20111201</creationdate><title>A fuzzy goal programming and meta heuristic algorithms for solving integrated production: distribution planning problem</title><author>Jolai, F. ; Razmi, J. ; Rostami, N. K. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-4ac204226671f72916fc8581552324e6e9166c531abaf24d955eaaa53c413a3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Business and Management</topic><topic>Collaboration</topic><topic>Decision making</topic><topic>Design</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Fuzzy sets</topic><topic>Genetic algorithms</topic><topic>Goal programming</topic><topic>Heuristic</topic><topic>Heuristic methods</topic><topic>Integer programming</topic><topic>Inventory</topic><topic>Linear programming</topic><topic>Literature reviews</topic><topic>Logistics</topic><topic>Mathematical models</topic><topic>Mathematical optimization</topic><topic>Mathematical programming</topic><topic>Objectives</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Planning</topic><topic>Production capacity</topic><topic>Production planning</topic><topic>Retail stores</topic><topic>Suppliers</topic><topic>Supply chain management</topic><topic>Supply chains</topic><topic>Systems design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jolai, F.</creatorcontrib><creatorcontrib>Razmi, J.</creatorcontrib><creatorcontrib>Rostami, N. K. M.</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Materials Business File</collection><collection>Materials Research Database</collection><jtitle>Central European journal of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jolai, F.</au><au>Razmi, J.</au><au>Rostami, N. K. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fuzzy goal programming and meta heuristic algorithms for solving integrated production: distribution planning problem</atitle><jtitle>Central European journal of operations research</jtitle><stitle>Cent Eur J Oper Res</stitle><date>2011-12-01</date><risdate>2011</risdate><volume>19</volume><issue>4</issue><spage>547</spage><epage>569</epage><pages>547-569</pages><issn>1435-246X</issn><eissn>1613-9178</eissn><abstract>Integrated production–distribution planning is one of the most important issues in supply chain management (SCM). We consider a supply chain (SC) network to consist of a manufacturer, with multiple plants, products, distribution centers (DCs), retailers and customers. A multi-objective linear programming problem for integrating production–distribution, which considers various simultaneously conflicting objectives, is developed. The decision maker’s imprecise aspiration levels of goals are incorporated into the model using a fuzzy goal programming approach. Due to complexity of the considered problem we propose three meta-heuristics to tackle the problem. A simple genetic algorithm and a particle swarm optimization (PSO) algorithm with a new fitness function, and an improved hybrid genetic algorithm are developed. In order to show the efficiency of the proposed methods, two classes of problems are considered and their instances are solved using all methods. The obtained results show that the improved hybrid genetic algorithm gives us the best solutions in a reasonable computational time.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s10100-010-0144-9</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1435-246X
ispartof Central European journal of operations research, 2011-12, Vol.19 (4), p.547-569
issn 1435-246X
1613-9178
language eng
recordid cdi_proquest_miscellaneous_1019630290
source SpringerLink Journals; Business Source Complete
subjects Algorithms
Analysis
Business and Management
Collaboration
Decision making
Design
Fuzzy
Fuzzy logic
Fuzzy set theory
Fuzzy sets
Genetic algorithms
Goal programming
Heuristic
Heuristic methods
Integer programming
Inventory
Linear programming
Literature reviews
Logistics
Mathematical models
Mathematical optimization
Mathematical programming
Objectives
Operations research
Operations Research/Decision Theory
Optimization
Original Paper
Planning
Production capacity
Production planning
Retail stores
Suppliers
Supply chain management
Supply chains
Systems design
title A fuzzy goal programming and meta heuristic algorithms for solving integrated production: distribution planning problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T00%3A19%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fuzzy%20goal%20programming%20and%20meta%20heuristic%20algorithms%20for%20solving%20integrated%20production:%20distribution%20planning%20problem&rft.jtitle=Central%20European%20journal%20of%20operations%20research&rft.au=Jolai,%20F.&rft.date=2011-12-01&rft.volume=19&rft.issue=4&rft.spage=547&rft.epage=569&rft.pages=547-569&rft.issn=1435-246X&rft.eissn=1613-9178&rft_id=info:doi/10.1007/s10100-010-0144-9&rft_dat=%3Cgale_proqu%3EA713047463%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=900898273&rft_id=info:pmid/&rft_galeid=A713047463&rfr_iscdi=true