Approximate Controllability of Fractional Order Semilinear Delay Systems

In this paper, the approximate controllability for a class of semilinear delay control systems of fractional order is proved under the natural assumption that the linear system is approximately controllable. The existence and uniqueness of the mild solution is also proved under suitable assumptions....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2011-11, Vol.151 (2), p.373-384
Hauptverfasser: Sukavanam, N., Kumar, Surendra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 384
container_issue 2
container_start_page 373
container_title Journal of optimization theory and applications
container_volume 151
creator Sukavanam, N.
Kumar, Surendra
description In this paper, the approximate controllability for a class of semilinear delay control systems of fractional order is proved under the natural assumption that the linear system is approximately controllable. The existence and uniqueness of the mild solution is also proved under suitable assumptions. An example is given to illustrate our main results.
doi_str_mv 10.1007/s10957-011-9905-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019629644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490885771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-ae934474935391107e8949beed37fd097798965d791bdcae9eec61811f25ad5f3</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4G3x5CWabJJN5liqtUKhh-o5pLuzsmV3U5Mt2Lc3ZQVB8DSH-f6fmY-QW84eOGP6MXIGSlPGOQVgisozMuFKC5obbc7JhLE8pyIXcEmuYtwxxsBoOSHL2X4f_FfTuQGzue-H4NvWbZu2GY6Zr7NFcOXQ-N612TpUGLINdmnZowvZE7bumG2OccAuXpOL2rURb37mlLwvnt_mS7pav7zOZytaCmkG6hCElFqCUAI4ZxoNSNgiVkLXFQOtwUChKg18W5WJRiwLbjivc-UqVYspuR9709mfB4yD7ZpYYjq6R3-IljMORQ6FlAm9-4Pu_CGkV6I1AEoaVUCC-AiVwccYsLb7kGyEY2qyJ7V2VGuTWntSa0_F-ZiJie0_MPwW_x_6Bsuhe0o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>899548569</pqid></control><display><type>article</type><title>Approximate Controllability of Fractional Order Semilinear Delay Systems</title><source>SpringerNature Journals</source><creator>Sukavanam, N. ; Kumar, Surendra</creator><creatorcontrib>Sukavanam, N. ; Kumar, Surendra</creatorcontrib><description>In this paper, the approximate controllability for a class of semilinear delay control systems of fractional order is proved under the natural assumption that the linear system is approximately controllable. The existence and uniqueness of the mild solution is also proved under suitable assumptions. An example is given to illustrate our main results.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-011-9905-4</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applications of Mathematics ; Approximation ; Banach spaces ; Calculus of Variations and Optimal Control; Optimization ; Control systems ; Controllability ; Delay ; Engineering ; Linear systems ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Stability ; Studies ; Theory of Computation ; Uniqueness</subject><ispartof>Journal of optimization theory and applications, 2011-11, Vol.151 (2), p.373-384</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-ae934474935391107e8949beed37fd097798965d791bdcae9eec61811f25ad5f3</citedby><cites>FETCH-LOGICAL-c348t-ae934474935391107e8949beed37fd097798965d791bdcae9eec61811f25ad5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10957-011-9905-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10957-011-9905-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sukavanam, N.</creatorcontrib><creatorcontrib>Kumar, Surendra</creatorcontrib><title>Approximate Controllability of Fractional Order Semilinear Delay Systems</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>In this paper, the approximate controllability for a class of semilinear delay control systems of fractional order is proved under the natural assumption that the linear system is approximately controllable. The existence and uniqueness of the mild solution is also proved under suitable assumptions. An example is given to illustrate our main results.</description><subject>Applications of Mathematics</subject><subject>Approximation</subject><subject>Banach spaces</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control systems</subject><subject>Controllability</subject><subject>Delay</subject><subject>Engineering</subject><subject>Linear systems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Stability</subject><subject>Studies</subject><subject>Theory of Computation</subject><subject>Uniqueness</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMFKAzEQhoMoWKsP4G3x5CWabJJN5liqtUKhh-o5pLuzsmV3U5Mt2Lc3ZQVB8DSH-f6fmY-QW84eOGP6MXIGSlPGOQVgisozMuFKC5obbc7JhLE8pyIXcEmuYtwxxsBoOSHL2X4f_FfTuQGzue-H4NvWbZu2GY6Zr7NFcOXQ-N612TpUGLINdmnZowvZE7bumG2OccAuXpOL2rURb37mlLwvnt_mS7pav7zOZytaCmkG6hCElFqCUAI4ZxoNSNgiVkLXFQOtwUChKg18W5WJRiwLbjivc-UqVYspuR9709mfB4yD7ZpYYjq6R3-IljMORQ6FlAm9-4Pu_CGkV6I1AEoaVUCC-AiVwccYsLb7kGyEY2qyJ7V2VGuTWntSa0_F-ZiJie0_MPwW_x_6Bsuhe0o</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Sukavanam, N.</creator><creator>Kumar, Surendra</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20111101</creationdate><title>Approximate Controllability of Fractional Order Semilinear Delay Systems</title><author>Sukavanam, N. ; Kumar, Surendra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-ae934474935391107e8949beed37fd097798965d791bdcae9eec61811f25ad5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applications of Mathematics</topic><topic>Approximation</topic><topic>Banach spaces</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control systems</topic><topic>Controllability</topic><topic>Delay</topic><topic>Engineering</topic><topic>Linear systems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Stability</topic><topic>Studies</topic><topic>Theory of Computation</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sukavanam, N.</creatorcontrib><creatorcontrib>Kumar, Surendra</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sukavanam, N.</au><au>Kumar, Surendra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate Controllability of Fractional Order Semilinear Delay Systems</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2011-11-01</date><risdate>2011</risdate><volume>151</volume><issue>2</issue><spage>373</spage><epage>384</epage><pages>373-384</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>In this paper, the approximate controllability for a class of semilinear delay control systems of fractional order is proved under the natural assumption that the linear system is approximately controllable. The existence and uniqueness of the mild solution is also proved under suitable assumptions. An example is given to illustrate our main results.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10957-011-9905-4</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3239
ispartof Journal of optimization theory and applications, 2011-11, Vol.151 (2), p.373-384
issn 0022-3239
1573-2878
language eng
recordid cdi_proquest_miscellaneous_1019629644
source SpringerNature Journals
subjects Applications of Mathematics
Approximation
Banach spaces
Calculus of Variations and Optimal Control
Optimization
Control systems
Controllability
Delay
Engineering
Linear systems
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Stability
Studies
Theory of Computation
Uniqueness
title Approximate Controllability of Fractional Order Semilinear Delay Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A16%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20Controllability%20of%20Fractional%20Order%20Semilinear%20Delay%20Systems&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Sukavanam,%20N.&rft.date=2011-11-01&rft.volume=151&rft.issue=2&rft.spage=373&rft.epage=384&rft.pages=373-384&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-011-9905-4&rft_dat=%3Cproquest_cross%3E2490885771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=899548569&rft_id=info:pmid/&rfr_iscdi=true