An Accelerometer-Based Digital Pen With a Trajectory Recognition Algorithm for Handwritten Digit and Gesture Recognition

This paper presents an accelerometer-based digital pen for handwritten digit and gesture trajectory recognition applications. The digital pen consists of a triaxial accelerometer, a microcontroller, and an RF wireless transmission module for sensing and collecting accelerations of handwriting and ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2012-07, Vol.59 (7), p.2998-3007
Hauptverfasser: Wang, Jeen-Shing, Chuang, Fang-Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3007
container_issue 7
container_start_page 2998
container_title IEEE transactions on industrial electronics (1982)
container_volume 59
creator Wang, Jeen-Shing
Chuang, Fang-Chen
description This paper presents an accelerometer-based digital pen for handwritten digit and gesture trajectory recognition applications. The digital pen consists of a triaxial accelerometer, a microcontroller, and an RF wireless transmission module for sensing and collecting accelerations of handwriting and gesture trajectories. The proposed trajectory recognition algorithm composes of the procedures of acceleration acquisition, signal preprocessing, feature generation, feature selection, and feature extraction. The algorithm is capable of translating time-series acceleration signals into important feature vectors. Users can use the pen to write digits or make hand gestures, and the accelerations of hand motions measured by the accelerometer are wirelessly transmitted to a computer for online trajectory recognition. The algorithm first extracts the time- and frequency-domain features from the acceleration signals and, then, further identifies the most important features by a hybrid method: kernel-based class separability for selecting significant features and linear discriminant analysis for reducing the dimension of features. The reduced features are sent to a trained probabilistic neural network for recognition. Our experimental results have successfully validated the effectiveness of the trajectory recognition algorithm for handwritten digit and gesture recognition using the proposed digital pen.
doi_str_mv 10.1109/TIE.2011.2167895
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019627791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6020787</ieee_id><sourcerecordid>1019627791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-c02ec5946e7d172b34d674708e19e644693c5eda5e2c02905d2b9ac238a804be3</originalsourceid><addsrcrecordid>eNpdkU1LAzEQhoMoWKt3wUvw5GXrJJuPzbFWbYWCIhWPS5qd1i3bjSZb1H9vakXE05DheV4mvIScMhgwBuZydncz4MDYgDOlCyP3SI9JqTNjRLFPesB1kQEIdUiOYlwBMCGZ7JGPYUuHzmGDwa-xw5Bd2YgVva6XdWcb-oAtfa67F2rpLNgVus6HT_qIzi_buqt9spulD4lY04UPdGLb6j09u-R9Z9C0oGOM3SbgX--YHCxsE_HkZ_bJ0-3NbDTJpvfju9Fwmrmc513mgKOTRijUFdN8notKaaGhQGZQCaFM7iRWViJPqAFZ8bmxjueFLUDMMe-Ti13ua_Bvm3RHua5j-m9jW_SbWDJgRnGtDUvo-T905TehTdeVhvOcKwM6QbCDXPAxBlyUr6Fe2_CZksptE2Vqotw2Uf40kZSznVIj4i-ugIMudP4FXV2Egw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922326907</pqid></control><display><type>article</type><title>An Accelerometer-Based Digital Pen With a Trajectory Recognition Algorithm for Handwritten Digit and Gesture Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Jeen-Shing ; Chuang, Fang-Chen</creator><creatorcontrib>Wang, Jeen-Shing ; Chuang, Fang-Chen</creatorcontrib><description>This paper presents an accelerometer-based digital pen for handwritten digit and gesture trajectory recognition applications. The digital pen consists of a triaxial accelerometer, a microcontroller, and an RF wireless transmission module for sensing and collecting accelerations of handwriting and gesture trajectories. The proposed trajectory recognition algorithm composes of the procedures of acceleration acquisition, signal preprocessing, feature generation, feature selection, and feature extraction. The algorithm is capable of translating time-series acceleration signals into important feature vectors. Users can use the pen to write digits or make hand gestures, and the accelerations of hand motions measured by the accelerometer are wirelessly transmitted to a computer for online trajectory recognition. The algorithm first extracts the time- and frequency-domain features from the acceleration signals and, then, further identifies the most important features by a hybrid method: kernel-based class separability for selecting significant features and linear discriminant analysis for reducing the dimension of features. The reduced features are sent to a trained probabilistic neural network for recognition. Our experimental results have successfully validated the effectiveness of the trajectory recognition algorithm for handwritten digit and gesture recognition using the proposed digital pen.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2011.2167895</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Accelerometer ; Accelerometers ; Algorithm design and analysis ; Algorithms ; Digital ; Digits ; Discriminant analysis ; Feature extraction ; gesture ; Handwriting recognition ; handwritten recognition ; linear discriminant analysis (LDA) ; Neural networks ; probabilistic neural network (PNN) ; Recognition ; Sensors ; Studies ; Trajectories ; Trajectory</subject><ispartof>IEEE transactions on industrial electronics (1982), 2012-07, Vol.59 (7), p.2998-3007</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-c02ec5946e7d172b34d674708e19e644693c5eda5e2c02905d2b9ac238a804be3</citedby><cites>FETCH-LOGICAL-c323t-c02ec5946e7d172b34d674708e19e644693c5eda5e2c02905d2b9ac238a804be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6020787$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6020787$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Jeen-Shing</creatorcontrib><creatorcontrib>Chuang, Fang-Chen</creatorcontrib><title>An Accelerometer-Based Digital Pen With a Trajectory Recognition Algorithm for Handwritten Digit and Gesture Recognition</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>This paper presents an accelerometer-based digital pen for handwritten digit and gesture trajectory recognition applications. The digital pen consists of a triaxial accelerometer, a microcontroller, and an RF wireless transmission module for sensing and collecting accelerations of handwriting and gesture trajectories. The proposed trajectory recognition algorithm composes of the procedures of acceleration acquisition, signal preprocessing, feature generation, feature selection, and feature extraction. The algorithm is capable of translating time-series acceleration signals into important feature vectors. Users can use the pen to write digits or make hand gestures, and the accelerations of hand motions measured by the accelerometer are wirelessly transmitted to a computer for online trajectory recognition. The algorithm first extracts the time- and frequency-domain features from the acceleration signals and, then, further identifies the most important features by a hybrid method: kernel-based class separability for selecting significant features and linear discriminant analysis for reducing the dimension of features. The reduced features are sent to a trained probabilistic neural network for recognition. Our experimental results have successfully validated the effectiveness of the trajectory recognition algorithm for handwritten digit and gesture recognition using the proposed digital pen.</description><subject>Acceleration</subject><subject>Accelerometer</subject><subject>Accelerometers</subject><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Digital</subject><subject>Digits</subject><subject>Discriminant analysis</subject><subject>Feature extraction</subject><subject>gesture</subject><subject>Handwriting recognition</subject><subject>handwritten recognition</subject><subject>linear discriminant analysis (LDA)</subject><subject>Neural networks</subject><subject>probabilistic neural network (PNN)</subject><subject>Recognition</subject><subject>Sensors</subject><subject>Studies</subject><subject>Trajectories</subject><subject>Trajectory</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1LAzEQhoMoWKt3wUvw5GXrJJuPzbFWbYWCIhWPS5qd1i3bjSZb1H9vakXE05DheV4mvIScMhgwBuZydncz4MDYgDOlCyP3SI9JqTNjRLFPesB1kQEIdUiOYlwBMCGZ7JGPYUuHzmGDwa-xw5Bd2YgVva6XdWcb-oAtfa67F2rpLNgVus6HT_qIzi_buqt9spulD4lY04UPdGLb6j09u-R9Z9C0oGOM3SbgX--YHCxsE_HkZ_bJ0-3NbDTJpvfju9Fwmrmc513mgKOTRijUFdN8notKaaGhQGZQCaFM7iRWViJPqAFZ8bmxjueFLUDMMe-Ti13ua_Bvm3RHua5j-m9jW_SbWDJgRnGtDUvo-T905TehTdeVhvOcKwM6QbCDXPAxBlyUr6Fe2_CZksptE2Vqotw2Uf40kZSznVIj4i-ugIMudP4FXV2Egw</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Wang, Jeen-Shing</creator><creator>Chuang, Fang-Chen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201207</creationdate><title>An Accelerometer-Based Digital Pen With a Trajectory Recognition Algorithm for Handwritten Digit and Gesture Recognition</title><author>Wang, Jeen-Shing ; Chuang, Fang-Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-c02ec5946e7d172b34d674708e19e644693c5eda5e2c02905d2b9ac238a804be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acceleration</topic><topic>Accelerometer</topic><topic>Accelerometers</topic><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Digital</topic><topic>Digits</topic><topic>Discriminant analysis</topic><topic>Feature extraction</topic><topic>gesture</topic><topic>Handwriting recognition</topic><topic>handwritten recognition</topic><topic>linear discriminant analysis (LDA)</topic><topic>Neural networks</topic><topic>probabilistic neural network (PNN)</topic><topic>Recognition</topic><topic>Sensors</topic><topic>Studies</topic><topic>Trajectories</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jeen-Shing</creatorcontrib><creatorcontrib>Chuang, Fang-Chen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Jeen-Shing</au><au>Chuang, Fang-Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Accelerometer-Based Digital Pen With a Trajectory Recognition Algorithm for Handwritten Digit and Gesture Recognition</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2012-07</date><risdate>2012</risdate><volume>59</volume><issue>7</issue><spage>2998</spage><epage>3007</epage><pages>2998-3007</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>This paper presents an accelerometer-based digital pen for handwritten digit and gesture trajectory recognition applications. The digital pen consists of a triaxial accelerometer, a microcontroller, and an RF wireless transmission module for sensing and collecting accelerations of handwriting and gesture trajectories. The proposed trajectory recognition algorithm composes of the procedures of acceleration acquisition, signal preprocessing, feature generation, feature selection, and feature extraction. The algorithm is capable of translating time-series acceleration signals into important feature vectors. Users can use the pen to write digits or make hand gestures, and the accelerations of hand motions measured by the accelerometer are wirelessly transmitted to a computer for online trajectory recognition. The algorithm first extracts the time- and frequency-domain features from the acceleration signals and, then, further identifies the most important features by a hybrid method: kernel-based class separability for selecting significant features and linear discriminant analysis for reducing the dimension of features. The reduced features are sent to a trained probabilistic neural network for recognition. Our experimental results have successfully validated the effectiveness of the trajectory recognition algorithm for handwritten digit and gesture recognition using the proposed digital pen.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2011.2167895</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2012-07, Vol.59 (7), p.2998-3007
issn 0278-0046
1557-9948
language eng
recordid cdi_proquest_miscellaneous_1019627791
source IEEE Electronic Library (IEL)
subjects Acceleration
Accelerometer
Accelerometers
Algorithm design and analysis
Algorithms
Digital
Digits
Discriminant analysis
Feature extraction
gesture
Handwriting recognition
handwritten recognition
linear discriminant analysis (LDA)
Neural networks
probabilistic neural network (PNN)
Recognition
Sensors
Studies
Trajectories
Trajectory
title An Accelerometer-Based Digital Pen With a Trajectory Recognition Algorithm for Handwritten Digit and Gesture Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T14%3A55%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Accelerometer-Based%20Digital%20Pen%20With%20a%20Trajectory%20Recognition%20Algorithm%20for%20Handwritten%20Digit%20and%20Gesture%20Recognition&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Wang,%20Jeen-Shing&rft.date=2012-07&rft.volume=59&rft.issue=7&rft.spage=2998&rft.epage=3007&rft.pages=2998-3007&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2011.2167895&rft_dat=%3Cproquest_RIE%3E1019627791%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922326907&rft_id=info:pmid/&rft_ieee_id=6020787&rfr_iscdi=true