Tunnel structure analysis using the multi-scale modeling method

► We build a 14km long pressurized water conveyance tunnel using the multi-scale modeling method. ► We simulate the water hammer in full tunnel length and analyze the structure responses of segment linings. ► The results provide us with a better understanding of water hammers and their effects on tu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tunnelling and underground space technology 2012-03, Vol.28, p.124-134
Hauptverfasser: Cao, Yuan, Wang, Puyong, Jin, Xianlong, Wang, Jianwei, Yang, Yanzhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 134
container_issue
container_start_page 124
container_title Tunnelling and underground space technology
container_volume 28
creator Cao, Yuan
Wang, Puyong
Jin, Xianlong
Wang, Jianwei
Yang, Yanzhi
description ► We build a 14km long pressurized water conveyance tunnel using the multi-scale modeling method. ► We simulate the water hammer in full tunnel length and analyze the structure responses of segment linings. ► The results provide us with a better understanding of water hammers and their effects on tunnel linings. Structure analysis of the long tunnel is difficult due to the lack of available computing power. Water hammer simulation in the water conveyance tunnel is also complicated because of strong fluid structure interactions (FSIs). In this paper, the multi-scale modeling method is used to simulate water hammer impacts in the long tunnel. The method can not only yield water hammer simulations along the full tunnel length, but also the detailed structural responses of the segment linings. In the proposed partitioned approach, the structural field is solved with the finite-element program LS-DYNA. The fluid field is solved with the CFD software package FLUENT. The interaction between two physical fields is realized using ALE description. A practical case study is presented and the results are discussed in detail. The results provide us with a better understanding of water hammers and their effects on tunnel linings.
doi_str_mv 10.1016/j.tust.2011.10.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019627703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0886779811001349</els_id><sourcerecordid>1019627703</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-be8168957761fce3c0b85ff82d8942d695f0d80c36bcd851c10a4149fe4c37e03</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AU-9CF5aJ2mbpCCILH7Bgpf1HLLp1M2SbdckFfbfm7KLR08zvPPMO8xLyA2FggLl95sijiEWDChNQgFQnZAZlULmVcmrUzIDKXkuRCPPyUUIGwCoGWtm5HE59j26LEQ_mjh6zHSv3T7YkI3B9l9ZXGO2HV20eTDapX5o0U2DLcb10F6Rs067gNfHekk-X56X87d88fH6Pn9a5LqUPOYrlJTLphaC085gaWAl666TrJVNxVre1B20EkzJV6aVNTUUdEWrpsPKlAKhvCR3B9-dH75HDFFtbTDonO5xGINKKTScCQFlQtkBNX4IwWOndt5utd8naOK42qgpLTWlNWkprbR0e_TX05-d172x4W-TccpBgEjcw4HD9OyPRa-CsdgbbK1HE1U72P_O_AIuLoBl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019627703</pqid></control><display><type>article</type><title>Tunnel structure analysis using the multi-scale modeling method</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Cao, Yuan ; Wang, Puyong ; Jin, Xianlong ; Wang, Jianwei ; Yang, Yanzhi</creator><creatorcontrib>Cao, Yuan ; Wang, Puyong ; Jin, Xianlong ; Wang, Jianwei ; Yang, Yanzhi</creatorcontrib><description>► We build a 14km long pressurized water conveyance tunnel using the multi-scale modeling method. ► We simulate the water hammer in full tunnel length and analyze the structure responses of segment linings. ► The results provide us with a better understanding of water hammers and their effects on tunnel linings. Structure analysis of the long tunnel is difficult due to the lack of available computing power. Water hammer simulation in the water conveyance tunnel is also complicated because of strong fluid structure interactions (FSIs). In this paper, the multi-scale modeling method is used to simulate water hammer impacts in the long tunnel. The method can not only yield water hammer simulations along the full tunnel length, but also the detailed structural responses of the segment linings. In the proposed partitioned approach, the structural field is solved with the finite-element program LS-DYNA. The fluid field is solved with the CFD software package FLUENT. The interaction between two physical fields is realized using ALE description. A practical case study is presented and the results are discussed in detail. The results provide us with a better understanding of water hammers and their effects on tunnel linings.</description><identifier>ISSN: 0886-7798</identifier><identifier>EISSN: 1878-4364</identifier><identifier>DOI: 10.1016/j.tust.2011.10.004</identifier><identifier>CODEN: TUSTEQ</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Buildings. Public works ; Computation methods. Tables. Charts ; Computational fluid dynamics ; Computer simulation ; Exact sciences and technology ; Fluid flow ; Fluid structure interaction ; Fluids ; Linings ; Mathematical models ; Multi-scale modeling ; Stresses. Safety ; Structural analysis. Stresses ; Structure analysis ; Tunnels (transportation) ; Tunnels, galleries ; Water conveyance tunnel ; Water hammer</subject><ispartof>Tunnelling and underground space technology, 2012-03, Vol.28, p.124-134</ispartof><rights>2011 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-be8168957761fce3c0b85ff82d8942d695f0d80c36bcd851c10a4149fe4c37e03</citedby><cites>FETCH-LOGICAL-a386t-be8168957761fce3c0b85ff82d8942d695f0d80c36bcd851c10a4149fe4c37e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tust.2011.10.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26160707$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Yuan</creatorcontrib><creatorcontrib>Wang, Puyong</creatorcontrib><creatorcontrib>Jin, Xianlong</creatorcontrib><creatorcontrib>Wang, Jianwei</creatorcontrib><creatorcontrib>Yang, Yanzhi</creatorcontrib><title>Tunnel structure analysis using the multi-scale modeling method</title><title>Tunnelling and underground space technology</title><description>► We build a 14km long pressurized water conveyance tunnel using the multi-scale modeling method. ► We simulate the water hammer in full tunnel length and analyze the structure responses of segment linings. ► The results provide us with a better understanding of water hammers and their effects on tunnel linings. Structure analysis of the long tunnel is difficult due to the lack of available computing power. Water hammer simulation in the water conveyance tunnel is also complicated because of strong fluid structure interactions (FSIs). In this paper, the multi-scale modeling method is used to simulate water hammer impacts in the long tunnel. The method can not only yield water hammer simulations along the full tunnel length, but also the detailed structural responses of the segment linings. In the proposed partitioned approach, the structural field is solved with the finite-element program LS-DYNA. The fluid field is solved with the CFD software package FLUENT. The interaction between two physical fields is realized using ALE description. A practical case study is presented and the results are discussed in detail. The results provide us with a better understanding of water hammers and their effects on tunnel linings.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Computation methods. Tables. Charts</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Fluid structure interaction</subject><subject>Fluids</subject><subject>Linings</subject><subject>Mathematical models</subject><subject>Multi-scale modeling</subject><subject>Stresses. Safety</subject><subject>Structural analysis. Stresses</subject><subject>Structure analysis</subject><subject>Tunnels (transportation)</subject><subject>Tunnels, galleries</subject><subject>Water conveyance tunnel</subject><subject>Water hammer</subject><issn>0886-7798</issn><issn>1878-4364</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78AU-9CF5aJ2mbpCCILH7Bgpf1HLLp1M2SbdckFfbfm7KLR08zvPPMO8xLyA2FggLl95sijiEWDChNQgFQnZAZlULmVcmrUzIDKXkuRCPPyUUIGwCoGWtm5HE59j26LEQ_mjh6zHSv3T7YkI3B9l9ZXGO2HV20eTDapX5o0U2DLcb10F6Rs067gNfHekk-X56X87d88fH6Pn9a5LqUPOYrlJTLphaC085gaWAl666TrJVNxVre1B20EkzJV6aVNTUUdEWrpsPKlAKhvCR3B9-dH75HDFFtbTDonO5xGINKKTScCQFlQtkBNX4IwWOndt5utd8naOK42qgpLTWlNWkprbR0e_TX05-d172x4W-TccpBgEjcw4HD9OyPRa-CsdgbbK1HE1U72P_O_AIuLoBl</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Cao, Yuan</creator><creator>Wang, Puyong</creator><creator>Jin, Xianlong</creator><creator>Wang, Jianwei</creator><creator>Yang, Yanzhi</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20120301</creationdate><title>Tunnel structure analysis using the multi-scale modeling method</title><author>Cao, Yuan ; Wang, Puyong ; Jin, Xianlong ; Wang, Jianwei ; Yang, Yanzhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-be8168957761fce3c0b85ff82d8942d695f0d80c36bcd851c10a4149fe4c37e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Computation methods. Tables. Charts</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Fluid structure interaction</topic><topic>Fluids</topic><topic>Linings</topic><topic>Mathematical models</topic><topic>Multi-scale modeling</topic><topic>Stresses. Safety</topic><topic>Structural analysis. Stresses</topic><topic>Structure analysis</topic><topic>Tunnels (transportation)</topic><topic>Tunnels, galleries</topic><topic>Water conveyance tunnel</topic><topic>Water hammer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Yuan</creatorcontrib><creatorcontrib>Wang, Puyong</creatorcontrib><creatorcontrib>Jin, Xianlong</creatorcontrib><creatorcontrib>Wang, Jianwei</creatorcontrib><creatorcontrib>Yang, Yanzhi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Tunnelling and underground space technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Yuan</au><au>Wang, Puyong</au><au>Jin, Xianlong</au><au>Wang, Jianwei</au><au>Yang, Yanzhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunnel structure analysis using the multi-scale modeling method</atitle><jtitle>Tunnelling and underground space technology</jtitle><date>2012-03-01</date><risdate>2012</risdate><volume>28</volume><spage>124</spage><epage>134</epage><pages>124-134</pages><issn>0886-7798</issn><eissn>1878-4364</eissn><coden>TUSTEQ</coden><abstract>► We build a 14km long pressurized water conveyance tunnel using the multi-scale modeling method. ► We simulate the water hammer in full tunnel length and analyze the structure responses of segment linings. ► The results provide us with a better understanding of water hammers and their effects on tunnel linings. Structure analysis of the long tunnel is difficult due to the lack of available computing power. Water hammer simulation in the water conveyance tunnel is also complicated because of strong fluid structure interactions (FSIs). In this paper, the multi-scale modeling method is used to simulate water hammer impacts in the long tunnel. The method can not only yield water hammer simulations along the full tunnel length, but also the detailed structural responses of the segment linings. In the proposed partitioned approach, the structural field is solved with the finite-element program LS-DYNA. The fluid field is solved with the CFD software package FLUENT. The interaction between two physical fields is realized using ALE description. A practical case study is presented and the results are discussed in detail. The results provide us with a better understanding of water hammers and their effects on tunnel linings.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.tust.2011.10.004</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0886-7798
ispartof Tunnelling and underground space technology, 2012-03, Vol.28, p.124-134
issn 0886-7798
1878-4364
language eng
recordid cdi_proquest_miscellaneous_1019627703
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Buildings. Public works
Computation methods. Tables. Charts
Computational fluid dynamics
Computer simulation
Exact sciences and technology
Fluid flow
Fluid structure interaction
Fluids
Linings
Mathematical models
Multi-scale modeling
Stresses. Safety
Structural analysis. Stresses
Structure analysis
Tunnels (transportation)
Tunnels, galleries
Water conveyance tunnel
Water hammer
title Tunnel structure analysis using the multi-scale modeling method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A29%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunnel%20structure%20analysis%20using%20the%20multi-scale%20modeling%20method&rft.jtitle=Tunnelling%20and%20underground%20space%20technology&rft.au=Cao,%20Yuan&rft.date=2012-03-01&rft.volume=28&rft.spage=124&rft.epage=134&rft.pages=124-134&rft.issn=0886-7798&rft.eissn=1878-4364&rft.coden=TUSTEQ&rft_id=info:doi/10.1016/j.tust.2011.10.004&rft_dat=%3Cproquest_cross%3E1019627703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019627703&rft_id=info:pmid/&rft_els_id=S0886779811001349&rfr_iscdi=true