Tunnel structure analysis using the multi-scale modeling method
► We build a 14km long pressurized water conveyance tunnel using the multi-scale modeling method. ► We simulate the water hammer in full tunnel length and analyze the structure responses of segment linings. ► The results provide us with a better understanding of water hammers and their effects on tu...
Gespeichert in:
Veröffentlicht in: | Tunnelling and underground space technology 2012-03, Vol.28, p.124-134 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 134 |
---|---|
container_issue | |
container_start_page | 124 |
container_title | Tunnelling and underground space technology |
container_volume | 28 |
creator | Cao, Yuan Wang, Puyong Jin, Xianlong Wang, Jianwei Yang, Yanzhi |
description | ► We build a 14km long pressurized water conveyance tunnel using the multi-scale modeling method. ► We simulate the water hammer in full tunnel length and analyze the structure responses of segment linings. ► The results provide us with a better understanding of water hammers and their effects on tunnel linings.
Structure analysis of the long tunnel is difficult due to the lack of available computing power. Water hammer simulation in the water conveyance tunnel is also complicated because of strong fluid structure interactions (FSIs). In this paper, the multi-scale modeling method is used to simulate water hammer impacts in the long tunnel. The method can not only yield water hammer simulations along the full tunnel length, but also the detailed structural responses of the segment linings. In the proposed partitioned approach, the structural field is solved with the finite-element program LS-DYNA. The fluid field is solved with the CFD software package FLUENT. The interaction between two physical fields is realized using ALE description. A practical case study is presented and the results are discussed in detail. The results provide us with a better understanding of water hammers and their effects on tunnel linings. |
doi_str_mv | 10.1016/j.tust.2011.10.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019627703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0886779811001349</els_id><sourcerecordid>1019627703</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-be8168957761fce3c0b85ff82d8942d695f0d80c36bcd851c10a4149fe4c37e03</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AU-9CF5aJ2mbpCCILH7Bgpf1HLLp1M2SbdckFfbfm7KLR08zvPPMO8xLyA2FggLl95sijiEWDChNQgFQnZAZlULmVcmrUzIDKXkuRCPPyUUIGwCoGWtm5HE59j26LEQ_mjh6zHSv3T7YkI3B9l9ZXGO2HV20eTDapX5o0U2DLcb10F6Rs067gNfHekk-X56X87d88fH6Pn9a5LqUPOYrlJTLphaC085gaWAl666TrJVNxVre1B20EkzJV6aVNTUUdEWrpsPKlAKhvCR3B9-dH75HDFFtbTDonO5xGINKKTScCQFlQtkBNX4IwWOndt5utd8naOK42qgpLTWlNWkprbR0e_TX05-d172x4W-TccpBgEjcw4HD9OyPRa-CsdgbbK1HE1U72P_O_AIuLoBl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019627703</pqid></control><display><type>article</type><title>Tunnel structure analysis using the multi-scale modeling method</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Cao, Yuan ; Wang, Puyong ; Jin, Xianlong ; Wang, Jianwei ; Yang, Yanzhi</creator><creatorcontrib>Cao, Yuan ; Wang, Puyong ; Jin, Xianlong ; Wang, Jianwei ; Yang, Yanzhi</creatorcontrib><description>► We build a 14km long pressurized water conveyance tunnel using the multi-scale modeling method. ► We simulate the water hammer in full tunnel length and analyze the structure responses of segment linings. ► The results provide us with a better understanding of water hammers and their effects on tunnel linings.
Structure analysis of the long tunnel is difficult due to the lack of available computing power. Water hammer simulation in the water conveyance tunnel is also complicated because of strong fluid structure interactions (FSIs). In this paper, the multi-scale modeling method is used to simulate water hammer impacts in the long tunnel. The method can not only yield water hammer simulations along the full tunnel length, but also the detailed structural responses of the segment linings. In the proposed partitioned approach, the structural field is solved with the finite-element program LS-DYNA. The fluid field is solved with the CFD software package FLUENT. The interaction between two physical fields is realized using ALE description. A practical case study is presented and the results are discussed in detail. The results provide us with a better understanding of water hammers and their effects on tunnel linings.</description><identifier>ISSN: 0886-7798</identifier><identifier>EISSN: 1878-4364</identifier><identifier>DOI: 10.1016/j.tust.2011.10.004</identifier><identifier>CODEN: TUSTEQ</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Buildings. Public works ; Computation methods. Tables. Charts ; Computational fluid dynamics ; Computer simulation ; Exact sciences and technology ; Fluid flow ; Fluid structure interaction ; Fluids ; Linings ; Mathematical models ; Multi-scale modeling ; Stresses. Safety ; Structural analysis. Stresses ; Structure analysis ; Tunnels (transportation) ; Tunnels, galleries ; Water conveyance tunnel ; Water hammer</subject><ispartof>Tunnelling and underground space technology, 2012-03, Vol.28, p.124-134</ispartof><rights>2011 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-be8168957761fce3c0b85ff82d8942d695f0d80c36bcd851c10a4149fe4c37e03</citedby><cites>FETCH-LOGICAL-a386t-be8168957761fce3c0b85ff82d8942d695f0d80c36bcd851c10a4149fe4c37e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tust.2011.10.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26160707$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Yuan</creatorcontrib><creatorcontrib>Wang, Puyong</creatorcontrib><creatorcontrib>Jin, Xianlong</creatorcontrib><creatorcontrib>Wang, Jianwei</creatorcontrib><creatorcontrib>Yang, Yanzhi</creatorcontrib><title>Tunnel structure analysis using the multi-scale modeling method</title><title>Tunnelling and underground space technology</title><description>► We build a 14km long pressurized water conveyance tunnel using the multi-scale modeling method. ► We simulate the water hammer in full tunnel length and analyze the structure responses of segment linings. ► The results provide us with a better understanding of water hammers and their effects on tunnel linings.
Structure analysis of the long tunnel is difficult due to the lack of available computing power. Water hammer simulation in the water conveyance tunnel is also complicated because of strong fluid structure interactions (FSIs). In this paper, the multi-scale modeling method is used to simulate water hammer impacts in the long tunnel. The method can not only yield water hammer simulations along the full tunnel length, but also the detailed structural responses of the segment linings. In the proposed partitioned approach, the structural field is solved with the finite-element program LS-DYNA. The fluid field is solved with the CFD software package FLUENT. The interaction between two physical fields is realized using ALE description. A practical case study is presented and the results are discussed in detail. The results provide us with a better understanding of water hammers and their effects on tunnel linings.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Computation methods. Tables. Charts</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Fluid structure interaction</subject><subject>Fluids</subject><subject>Linings</subject><subject>Mathematical models</subject><subject>Multi-scale modeling</subject><subject>Stresses. Safety</subject><subject>Structural analysis. Stresses</subject><subject>Structure analysis</subject><subject>Tunnels (transportation)</subject><subject>Tunnels, galleries</subject><subject>Water conveyance tunnel</subject><subject>Water hammer</subject><issn>0886-7798</issn><issn>1878-4364</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78AU-9CF5aJ2mbpCCILH7Bgpf1HLLp1M2SbdckFfbfm7KLR08zvPPMO8xLyA2FggLl95sijiEWDChNQgFQnZAZlULmVcmrUzIDKXkuRCPPyUUIGwCoGWtm5HE59j26LEQ_mjh6zHSv3T7YkI3B9l9ZXGO2HV20eTDapX5o0U2DLcb10F6Rs067gNfHekk-X56X87d88fH6Pn9a5LqUPOYrlJTLphaC085gaWAl666TrJVNxVre1B20EkzJV6aVNTUUdEWrpsPKlAKhvCR3B9-dH75HDFFtbTDonO5xGINKKTScCQFlQtkBNX4IwWOndt5utd8naOK42qgpLTWlNWkprbR0e_TX05-d172x4W-TccpBgEjcw4HD9OyPRa-CsdgbbK1HE1U72P_O_AIuLoBl</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Cao, Yuan</creator><creator>Wang, Puyong</creator><creator>Jin, Xianlong</creator><creator>Wang, Jianwei</creator><creator>Yang, Yanzhi</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20120301</creationdate><title>Tunnel structure analysis using the multi-scale modeling method</title><author>Cao, Yuan ; Wang, Puyong ; Jin, Xianlong ; Wang, Jianwei ; Yang, Yanzhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-be8168957761fce3c0b85ff82d8942d695f0d80c36bcd851c10a4149fe4c37e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Computation methods. Tables. Charts</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Fluid structure interaction</topic><topic>Fluids</topic><topic>Linings</topic><topic>Mathematical models</topic><topic>Multi-scale modeling</topic><topic>Stresses. Safety</topic><topic>Structural analysis. Stresses</topic><topic>Structure analysis</topic><topic>Tunnels (transportation)</topic><topic>Tunnels, galleries</topic><topic>Water conveyance tunnel</topic><topic>Water hammer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Yuan</creatorcontrib><creatorcontrib>Wang, Puyong</creatorcontrib><creatorcontrib>Jin, Xianlong</creatorcontrib><creatorcontrib>Wang, Jianwei</creatorcontrib><creatorcontrib>Yang, Yanzhi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Tunnelling and underground space technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Yuan</au><au>Wang, Puyong</au><au>Jin, Xianlong</au><au>Wang, Jianwei</au><au>Yang, Yanzhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunnel structure analysis using the multi-scale modeling method</atitle><jtitle>Tunnelling and underground space technology</jtitle><date>2012-03-01</date><risdate>2012</risdate><volume>28</volume><spage>124</spage><epage>134</epage><pages>124-134</pages><issn>0886-7798</issn><eissn>1878-4364</eissn><coden>TUSTEQ</coden><abstract>► We build a 14km long pressurized water conveyance tunnel using the multi-scale modeling method. ► We simulate the water hammer in full tunnel length and analyze the structure responses of segment linings. ► The results provide us with a better understanding of water hammers and their effects on tunnel linings.
Structure analysis of the long tunnel is difficult due to the lack of available computing power. Water hammer simulation in the water conveyance tunnel is also complicated because of strong fluid structure interactions (FSIs). In this paper, the multi-scale modeling method is used to simulate water hammer impacts in the long tunnel. The method can not only yield water hammer simulations along the full tunnel length, but also the detailed structural responses of the segment linings. In the proposed partitioned approach, the structural field is solved with the finite-element program LS-DYNA. The fluid field is solved with the CFD software package FLUENT. The interaction between two physical fields is realized using ALE description. A practical case study is presented and the results are discussed in detail. The results provide us with a better understanding of water hammers and their effects on tunnel linings.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.tust.2011.10.004</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0886-7798 |
ispartof | Tunnelling and underground space technology, 2012-03, Vol.28, p.124-134 |
issn | 0886-7798 1878-4364 |
language | eng |
recordid | cdi_proquest_miscellaneous_1019627703 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Buildings. Public works Computation methods. Tables. Charts Computational fluid dynamics Computer simulation Exact sciences and technology Fluid flow Fluid structure interaction Fluids Linings Mathematical models Multi-scale modeling Stresses. Safety Structural analysis. Stresses Structure analysis Tunnels (transportation) Tunnels, galleries Water conveyance tunnel Water hammer |
title | Tunnel structure analysis using the multi-scale modeling method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A29%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunnel%20structure%20analysis%20using%20the%20multi-scale%20modeling%20method&rft.jtitle=Tunnelling%20and%20underground%20space%20technology&rft.au=Cao,%20Yuan&rft.date=2012-03-01&rft.volume=28&rft.spage=124&rft.epage=134&rft.pages=124-134&rft.issn=0886-7798&rft.eissn=1878-4364&rft.coden=TUSTEQ&rft_id=info:doi/10.1016/j.tust.2011.10.004&rft_dat=%3Cproquest_cross%3E1019627703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019627703&rft_id=info:pmid/&rft_els_id=S0886779811001349&rfr_iscdi=true |