Three adsorbers solar cooler with composite sorbent bed and heat pipe thermal control

Three adsorbers solar cooler was experimentally investigated. Ammonia was chosen as a working fluid. Two adsorbers (twins) were filled with the same complex compound (activated carbon fiber with MnCl2 microcrystals on the filament surface). The third low temperature adsorber has second complex compo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2012-05, Vol.38, p.124-130
Hauptverfasser: Alyousef, Y., Antukh, A.A., Tsitovich, A.P., Vasiliev, L.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 130
container_issue
container_start_page 124
container_title Applied thermal engineering
container_volume 38
creator Alyousef, Y.
Antukh, A.A.
Tsitovich, A.P.
Vasiliev, L.L.
description Three adsorbers solar cooler was experimentally investigated. Ammonia was chosen as a working fluid. Two adsorbers (twins) were filled with the same complex compound (activated carbon fiber with MnCl2 microcrystals on the filament surface). The third low temperature adsorber has second complex compound (activated carbon fiber with BaCl2 microcrystals on the filament surface). The cycle of physical adsorption and chemical reactions in the sorbent bed of adsorber was followed by condensation/evaporation of ammonia inside the pores. This combination of adsorption/condensation and evaporation/desorption is a novelty of cooler design, which increases the heat and cold generation in adsorber. The specific feature of third adsorber is the time of its cold generation. This time includes the liquid evaporation and desorption/regeneration time of ammonia in the sorbent bed. The cooler thermal management is based on heat pipes. The solar heating is a source of energy for cooler. The sink of the cold is the air flow. ► Three bed solar sorption cooler was experimentally analyzed. ► Thermal management based on heat pipe heat exchangers stimulated the intense heat transfer in the sorbent bed. ► Complex compound sorbent materials ensured the high specific cooling power SCP of low temperature adsorber.
doi_str_mv 10.1016/j.applthermaleng.2011.12.031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019623424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431111007289</els_id><sourcerecordid>1019623424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-93b7c590d46732fde2c224c32c0a8e101fce89cf8507af0bfdcccf112ff6fdef3</originalsourceid><addsrcrecordid>eNqN0E1LAzEQBuA9KFir_yEHBS9d87HdD_AixapQ8NKeQzo7cVOymzVJFf-90RbBm6fk8Mw7zJtlV4zmjLLydpercbSxQ98ri8NrziljOeM5FewkmzAxb2aFYOwsOw9hRynjdVVMss2684hEtcH5LfpAgrPKE3DOoicfJnbp348umIjkxwyRbLElamhJhyqS0YxIjnuTHaJ39iI71coGvDy-02yzfFgvnmarl8fnxf1qBqIRcdaIbQXzhrZFWQmuW-TAeQGCA1U1prM0YN2Arue0UppudQsAmjGudZm0FtPs5pA7eve2xxBlbwKgtWpAtw8yRTQlFwUvEr07UPAuBI9ajt70yn8m9O1KuZN_G5TfDUrGZWowjV8fN6kAymqvBjDhN4PPy7Koaprc8uAwnf1u0MsABgfA1niEKFtn_rfwC2mMk-c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019623424</pqid></control><display><type>article</type><title>Three adsorbers solar cooler with composite sorbent bed and heat pipe thermal control</title><source>Elsevier ScienceDirect Journals</source><creator>Alyousef, Y. ; Antukh, A.A. ; Tsitovich, A.P. ; Vasiliev, L.L.</creator><creatorcontrib>Alyousef, Y. ; Antukh, A.A. ; Tsitovich, A.P. ; Vasiliev, L.L.</creatorcontrib><description>Three adsorbers solar cooler was experimentally investigated. Ammonia was chosen as a working fluid. Two adsorbers (twins) were filled with the same complex compound (activated carbon fiber with MnCl2 microcrystals on the filament surface). The third low temperature adsorber has second complex compound (activated carbon fiber with BaCl2 microcrystals on the filament surface). The cycle of physical adsorption and chemical reactions in the sorbent bed of adsorber was followed by condensation/evaporation of ammonia inside the pores. This combination of adsorption/condensation and evaporation/desorption is a novelty of cooler design, which increases the heat and cold generation in adsorber. The specific feature of third adsorber is the time of its cold generation. This time includes the liquid evaporation and desorption/regeneration time of ammonia in the sorbent bed. The cooler thermal management is based on heat pipes. The solar heating is a source of energy for cooler. The sink of the cold is the air flow. ► Three bed solar sorption cooler was experimentally analyzed. ► Thermal management based on heat pipe heat exchangers stimulated the intense heat transfer in the sorbent bed. ► Complex compound sorbent materials ensured the high specific cooling power SCP of low temperature adsorber.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2011.12.031</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Adsorption ; Ammonia ; Applied sciences ; Chemical reactions ; Coolers ; Energy ; Energy. Thermal use of fuels ; Evaporation ; Exact sciences and technology ; Filaments ; Heat pipes ; Heat recovery ; Heat transfer ; Microcrystals ; Solar heating ; Sorbents ; Surface chemistry ; Theoretical studies. Data and constants. Metering</subject><ispartof>Applied thermal engineering, 2012-05, Vol.38, p.124-130</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-93b7c590d46732fde2c224c32c0a8e101fce89cf8507af0bfdcccf112ff6fdef3</citedby><cites>FETCH-LOGICAL-c393t-93b7c590d46732fde2c224c32c0a8e101fce89cf8507af0bfdcccf112ff6fdef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359431111007289$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25664780$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Alyousef, Y.</creatorcontrib><creatorcontrib>Antukh, A.A.</creatorcontrib><creatorcontrib>Tsitovich, A.P.</creatorcontrib><creatorcontrib>Vasiliev, L.L.</creatorcontrib><title>Three adsorbers solar cooler with composite sorbent bed and heat pipe thermal control</title><title>Applied thermal engineering</title><description>Three adsorbers solar cooler was experimentally investigated. Ammonia was chosen as a working fluid. Two adsorbers (twins) were filled with the same complex compound (activated carbon fiber with MnCl2 microcrystals on the filament surface). The third low temperature adsorber has second complex compound (activated carbon fiber with BaCl2 microcrystals on the filament surface). The cycle of physical adsorption and chemical reactions in the sorbent bed of adsorber was followed by condensation/evaporation of ammonia inside the pores. This combination of adsorption/condensation and evaporation/desorption is a novelty of cooler design, which increases the heat and cold generation in adsorber. The specific feature of third adsorber is the time of its cold generation. This time includes the liquid evaporation and desorption/regeneration time of ammonia in the sorbent bed. The cooler thermal management is based on heat pipes. The solar heating is a source of energy for cooler. The sink of the cold is the air flow. ► Three bed solar sorption cooler was experimentally analyzed. ► Thermal management based on heat pipe heat exchangers stimulated the intense heat transfer in the sorbent bed. ► Complex compound sorbent materials ensured the high specific cooling power SCP of low temperature adsorber.</description><subject>Adsorption</subject><subject>Ammonia</subject><subject>Applied sciences</subject><subject>Chemical reactions</subject><subject>Coolers</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Evaporation</subject><subject>Exact sciences and technology</subject><subject>Filaments</subject><subject>Heat pipes</subject><subject>Heat recovery</subject><subject>Heat transfer</subject><subject>Microcrystals</subject><subject>Solar heating</subject><subject>Sorbents</subject><subject>Surface chemistry</subject><subject>Theoretical studies. Data and constants. Metering</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqN0E1LAzEQBuA9KFir_yEHBS9d87HdD_AixapQ8NKeQzo7cVOymzVJFf-90RbBm6fk8Mw7zJtlV4zmjLLydpercbSxQ98ri8NrziljOeM5FewkmzAxb2aFYOwsOw9hRynjdVVMss2684hEtcH5LfpAgrPKE3DOoicfJnbp348umIjkxwyRbLElamhJhyqS0YxIjnuTHaJ39iI71coGvDy-02yzfFgvnmarl8fnxf1qBqIRcdaIbQXzhrZFWQmuW-TAeQGCA1U1prM0YN2Arue0UppudQsAmjGudZm0FtPs5pA7eve2xxBlbwKgtWpAtw8yRTQlFwUvEr07UPAuBI9ajt70yn8m9O1KuZN_G5TfDUrGZWowjV8fN6kAymqvBjDhN4PPy7Koaprc8uAwnf1u0MsABgfA1niEKFtn_rfwC2mMk-c</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Alyousef, Y.</creator><creator>Antukh, A.A.</creator><creator>Tsitovich, A.P.</creator><creator>Vasiliev, L.L.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20120501</creationdate><title>Three adsorbers solar cooler with composite sorbent bed and heat pipe thermal control</title><author>Alyousef, Y. ; Antukh, A.A. ; Tsitovich, A.P. ; Vasiliev, L.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-93b7c590d46732fde2c224c32c0a8e101fce89cf8507af0bfdcccf112ff6fdef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adsorption</topic><topic>Ammonia</topic><topic>Applied sciences</topic><topic>Chemical reactions</topic><topic>Coolers</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Evaporation</topic><topic>Exact sciences and technology</topic><topic>Filaments</topic><topic>Heat pipes</topic><topic>Heat recovery</topic><topic>Heat transfer</topic><topic>Microcrystals</topic><topic>Solar heating</topic><topic>Sorbents</topic><topic>Surface chemistry</topic><topic>Theoretical studies. Data and constants. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alyousef, Y.</creatorcontrib><creatorcontrib>Antukh, A.A.</creatorcontrib><creatorcontrib>Tsitovich, A.P.</creatorcontrib><creatorcontrib>Vasiliev, L.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alyousef, Y.</au><au>Antukh, A.A.</au><au>Tsitovich, A.P.</au><au>Vasiliev, L.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three adsorbers solar cooler with composite sorbent bed and heat pipe thermal control</atitle><jtitle>Applied thermal engineering</jtitle><date>2012-05-01</date><risdate>2012</risdate><volume>38</volume><spage>124</spage><epage>130</epage><pages>124-130</pages><issn>1359-4311</issn><abstract>Three adsorbers solar cooler was experimentally investigated. Ammonia was chosen as a working fluid. Two adsorbers (twins) were filled with the same complex compound (activated carbon fiber with MnCl2 microcrystals on the filament surface). The third low temperature adsorber has second complex compound (activated carbon fiber with BaCl2 microcrystals on the filament surface). The cycle of physical adsorption and chemical reactions in the sorbent bed of adsorber was followed by condensation/evaporation of ammonia inside the pores. This combination of adsorption/condensation and evaporation/desorption is a novelty of cooler design, which increases the heat and cold generation in adsorber. The specific feature of third adsorber is the time of its cold generation. This time includes the liquid evaporation and desorption/regeneration time of ammonia in the sorbent bed. The cooler thermal management is based on heat pipes. The solar heating is a source of energy for cooler. The sink of the cold is the air flow. ► Three bed solar sorption cooler was experimentally analyzed. ► Thermal management based on heat pipe heat exchangers stimulated the intense heat transfer in the sorbent bed. ► Complex compound sorbent materials ensured the high specific cooling power SCP of low temperature adsorber.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2011.12.031</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2012-05, Vol.38, p.124-130
issn 1359-4311
language eng
recordid cdi_proquest_miscellaneous_1019623424
source Elsevier ScienceDirect Journals
subjects Adsorption
Ammonia
Applied sciences
Chemical reactions
Coolers
Energy
Energy. Thermal use of fuels
Evaporation
Exact sciences and technology
Filaments
Heat pipes
Heat recovery
Heat transfer
Microcrystals
Solar heating
Sorbents
Surface chemistry
Theoretical studies. Data and constants. Metering
title Three adsorbers solar cooler with composite sorbent bed and heat pipe thermal control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A23%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%20adsorbers%20solar%20cooler%20with%20composite%20sorbent%20bed%20and%20heat%20pipe%20thermal%20control&rft.jtitle=Applied%20thermal%20engineering&rft.au=Alyousef,%20Y.&rft.date=2012-05-01&rft.volume=38&rft.spage=124&rft.epage=130&rft.pages=124-130&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2011.12.031&rft_dat=%3Cproquest_cross%3E1019623424%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019623424&rft_id=info:pmid/&rft_els_id=S1359431111007289&rfr_iscdi=true