Three adsorbers solar cooler with composite sorbent bed and heat pipe thermal control
Three adsorbers solar cooler was experimentally investigated. Ammonia was chosen as a working fluid. Two adsorbers (twins) were filled with the same complex compound (activated carbon fiber with MnCl2 microcrystals on the filament surface). The third low temperature adsorber has second complex compo...
Gespeichert in:
Veröffentlicht in: | Applied thermal engineering 2012-05, Vol.38, p.124-130 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 130 |
---|---|
container_issue | |
container_start_page | 124 |
container_title | Applied thermal engineering |
container_volume | 38 |
creator | Alyousef, Y. Antukh, A.A. Tsitovich, A.P. Vasiliev, L.L. |
description | Three adsorbers solar cooler was experimentally investigated. Ammonia was chosen as a working fluid. Two adsorbers (twins) were filled with the same complex compound (activated carbon fiber with MnCl2 microcrystals on the filament surface). The third low temperature adsorber has second complex compound (activated carbon fiber with BaCl2 microcrystals on the filament surface). The cycle of physical adsorption and chemical reactions in the sorbent bed of adsorber was followed by condensation/evaporation of ammonia inside the pores. This combination of adsorption/condensation and evaporation/desorption is a novelty of cooler design, which increases the heat and cold generation in adsorber. The specific feature of third adsorber is the time of its cold generation. This time includes the liquid evaporation and desorption/regeneration time of ammonia in the sorbent bed. The cooler thermal management is based on heat pipes. The solar heating is a source of energy for cooler. The sink of the cold is the air flow.
► Three bed solar sorption cooler was experimentally analyzed. ► Thermal management based on heat pipe heat exchangers stimulated the intense heat transfer in the sorbent bed. ► Complex compound sorbent materials ensured the high specific cooling power SCP of low temperature adsorber. |
doi_str_mv | 10.1016/j.applthermaleng.2011.12.031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019623424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431111007289</els_id><sourcerecordid>1019623424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-93b7c590d46732fde2c224c32c0a8e101fce89cf8507af0bfdcccf112ff6fdef3</originalsourceid><addsrcrecordid>eNqN0E1LAzEQBuA9KFir_yEHBS9d87HdD_AixapQ8NKeQzo7cVOymzVJFf-90RbBm6fk8Mw7zJtlV4zmjLLydpercbSxQ98ri8NrziljOeM5FewkmzAxb2aFYOwsOw9hRynjdVVMss2684hEtcH5LfpAgrPKE3DOoicfJnbp348umIjkxwyRbLElamhJhyqS0YxIjnuTHaJ39iI71coGvDy-02yzfFgvnmarl8fnxf1qBqIRcdaIbQXzhrZFWQmuW-TAeQGCA1U1prM0YN2Arue0UppudQsAmjGudZm0FtPs5pA7eve2xxBlbwKgtWpAtw8yRTQlFwUvEr07UPAuBI9ajt70yn8m9O1KuZN_G5TfDUrGZWowjV8fN6kAymqvBjDhN4PPy7Koaprc8uAwnf1u0MsABgfA1niEKFtn_rfwC2mMk-c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019623424</pqid></control><display><type>article</type><title>Three adsorbers solar cooler with composite sorbent bed and heat pipe thermal control</title><source>Elsevier ScienceDirect Journals</source><creator>Alyousef, Y. ; Antukh, A.A. ; Tsitovich, A.P. ; Vasiliev, L.L.</creator><creatorcontrib>Alyousef, Y. ; Antukh, A.A. ; Tsitovich, A.P. ; Vasiliev, L.L.</creatorcontrib><description>Three adsorbers solar cooler was experimentally investigated. Ammonia was chosen as a working fluid. Two adsorbers (twins) were filled with the same complex compound (activated carbon fiber with MnCl2 microcrystals on the filament surface). The third low temperature adsorber has second complex compound (activated carbon fiber with BaCl2 microcrystals on the filament surface). The cycle of physical adsorption and chemical reactions in the sorbent bed of adsorber was followed by condensation/evaporation of ammonia inside the pores. This combination of adsorption/condensation and evaporation/desorption is a novelty of cooler design, which increases the heat and cold generation in adsorber. The specific feature of third adsorber is the time of its cold generation. This time includes the liquid evaporation and desorption/regeneration time of ammonia in the sorbent bed. The cooler thermal management is based on heat pipes. The solar heating is a source of energy for cooler. The sink of the cold is the air flow.
► Three bed solar sorption cooler was experimentally analyzed. ► Thermal management based on heat pipe heat exchangers stimulated the intense heat transfer in the sorbent bed. ► Complex compound sorbent materials ensured the high specific cooling power SCP of low temperature adsorber.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2011.12.031</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Adsorption ; Ammonia ; Applied sciences ; Chemical reactions ; Coolers ; Energy ; Energy. Thermal use of fuels ; Evaporation ; Exact sciences and technology ; Filaments ; Heat pipes ; Heat recovery ; Heat transfer ; Microcrystals ; Solar heating ; Sorbents ; Surface chemistry ; Theoretical studies. Data and constants. Metering</subject><ispartof>Applied thermal engineering, 2012-05, Vol.38, p.124-130</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-93b7c590d46732fde2c224c32c0a8e101fce89cf8507af0bfdcccf112ff6fdef3</citedby><cites>FETCH-LOGICAL-c393t-93b7c590d46732fde2c224c32c0a8e101fce89cf8507af0bfdcccf112ff6fdef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359431111007289$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25664780$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Alyousef, Y.</creatorcontrib><creatorcontrib>Antukh, A.A.</creatorcontrib><creatorcontrib>Tsitovich, A.P.</creatorcontrib><creatorcontrib>Vasiliev, L.L.</creatorcontrib><title>Three adsorbers solar cooler with composite sorbent bed and heat pipe thermal control</title><title>Applied thermal engineering</title><description>Three adsorbers solar cooler was experimentally investigated. Ammonia was chosen as a working fluid. Two adsorbers (twins) were filled with the same complex compound (activated carbon fiber with MnCl2 microcrystals on the filament surface). The third low temperature adsorber has second complex compound (activated carbon fiber with BaCl2 microcrystals on the filament surface). The cycle of physical adsorption and chemical reactions in the sorbent bed of adsorber was followed by condensation/evaporation of ammonia inside the pores. This combination of adsorption/condensation and evaporation/desorption is a novelty of cooler design, which increases the heat and cold generation in adsorber. The specific feature of third adsorber is the time of its cold generation. This time includes the liquid evaporation and desorption/regeneration time of ammonia in the sorbent bed. The cooler thermal management is based on heat pipes. The solar heating is a source of energy for cooler. The sink of the cold is the air flow.
► Three bed solar sorption cooler was experimentally analyzed. ► Thermal management based on heat pipe heat exchangers stimulated the intense heat transfer in the sorbent bed. ► Complex compound sorbent materials ensured the high specific cooling power SCP of low temperature adsorber.</description><subject>Adsorption</subject><subject>Ammonia</subject><subject>Applied sciences</subject><subject>Chemical reactions</subject><subject>Coolers</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Evaporation</subject><subject>Exact sciences and technology</subject><subject>Filaments</subject><subject>Heat pipes</subject><subject>Heat recovery</subject><subject>Heat transfer</subject><subject>Microcrystals</subject><subject>Solar heating</subject><subject>Sorbents</subject><subject>Surface chemistry</subject><subject>Theoretical studies. Data and constants. Metering</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqN0E1LAzEQBuA9KFir_yEHBS9d87HdD_AixapQ8NKeQzo7cVOymzVJFf-90RbBm6fk8Mw7zJtlV4zmjLLydpercbSxQ98ri8NrziljOeM5FewkmzAxb2aFYOwsOw9hRynjdVVMss2684hEtcH5LfpAgrPKE3DOoicfJnbp348umIjkxwyRbLElamhJhyqS0YxIjnuTHaJ39iI71coGvDy-02yzfFgvnmarl8fnxf1qBqIRcdaIbQXzhrZFWQmuW-TAeQGCA1U1prM0YN2Arue0UppudQsAmjGudZm0FtPs5pA7eve2xxBlbwKgtWpAtw8yRTQlFwUvEr07UPAuBI9ajt70yn8m9O1KuZN_G5TfDUrGZWowjV8fN6kAymqvBjDhN4PPy7Koaprc8uAwnf1u0MsABgfA1niEKFtn_rfwC2mMk-c</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Alyousef, Y.</creator><creator>Antukh, A.A.</creator><creator>Tsitovich, A.P.</creator><creator>Vasiliev, L.L.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20120501</creationdate><title>Three adsorbers solar cooler with composite sorbent bed and heat pipe thermal control</title><author>Alyousef, Y. ; Antukh, A.A. ; Tsitovich, A.P. ; Vasiliev, L.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-93b7c590d46732fde2c224c32c0a8e101fce89cf8507af0bfdcccf112ff6fdef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adsorption</topic><topic>Ammonia</topic><topic>Applied sciences</topic><topic>Chemical reactions</topic><topic>Coolers</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Evaporation</topic><topic>Exact sciences and technology</topic><topic>Filaments</topic><topic>Heat pipes</topic><topic>Heat recovery</topic><topic>Heat transfer</topic><topic>Microcrystals</topic><topic>Solar heating</topic><topic>Sorbents</topic><topic>Surface chemistry</topic><topic>Theoretical studies. Data and constants. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alyousef, Y.</creatorcontrib><creatorcontrib>Antukh, A.A.</creatorcontrib><creatorcontrib>Tsitovich, A.P.</creatorcontrib><creatorcontrib>Vasiliev, L.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alyousef, Y.</au><au>Antukh, A.A.</au><au>Tsitovich, A.P.</au><au>Vasiliev, L.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three adsorbers solar cooler with composite sorbent bed and heat pipe thermal control</atitle><jtitle>Applied thermal engineering</jtitle><date>2012-05-01</date><risdate>2012</risdate><volume>38</volume><spage>124</spage><epage>130</epage><pages>124-130</pages><issn>1359-4311</issn><abstract>Three adsorbers solar cooler was experimentally investigated. Ammonia was chosen as a working fluid. Two adsorbers (twins) were filled with the same complex compound (activated carbon fiber with MnCl2 microcrystals on the filament surface). The third low temperature adsorber has second complex compound (activated carbon fiber with BaCl2 microcrystals on the filament surface). The cycle of physical adsorption and chemical reactions in the sorbent bed of adsorber was followed by condensation/evaporation of ammonia inside the pores. This combination of adsorption/condensation and evaporation/desorption is a novelty of cooler design, which increases the heat and cold generation in adsorber. The specific feature of third adsorber is the time of its cold generation. This time includes the liquid evaporation and desorption/regeneration time of ammonia in the sorbent bed. The cooler thermal management is based on heat pipes. The solar heating is a source of energy for cooler. The sink of the cold is the air flow.
► Three bed solar sorption cooler was experimentally analyzed. ► Thermal management based on heat pipe heat exchangers stimulated the intense heat transfer in the sorbent bed. ► Complex compound sorbent materials ensured the high specific cooling power SCP of low temperature adsorber.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2011.12.031</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-4311 |
ispartof | Applied thermal engineering, 2012-05, Vol.38, p.124-130 |
issn | 1359-4311 |
language | eng |
recordid | cdi_proquest_miscellaneous_1019623424 |
source | Elsevier ScienceDirect Journals |
subjects | Adsorption Ammonia Applied sciences Chemical reactions Coolers Energy Energy. Thermal use of fuels Evaporation Exact sciences and technology Filaments Heat pipes Heat recovery Heat transfer Microcrystals Solar heating Sorbents Surface chemistry Theoretical studies. Data and constants. Metering |
title | Three adsorbers solar cooler with composite sorbent bed and heat pipe thermal control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A23%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%20adsorbers%20solar%20cooler%20with%20composite%20sorbent%20bed%20and%20heat%20pipe%20thermal%20control&rft.jtitle=Applied%20thermal%20engineering&rft.au=Alyousef,%20Y.&rft.date=2012-05-01&rft.volume=38&rft.spage=124&rft.epage=130&rft.pages=124-130&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2011.12.031&rft_dat=%3Cproquest_cross%3E1019623424%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019623424&rft_id=info:pmid/&rft_els_id=S1359431111007289&rfr_iscdi=true |