Distortion and stability of the fixed point property for non-expansive mappings

Let X be a Banach space. We say that X satisfies the fixed point property (weak fixed point property) if every non-expansive mapping defined from a convex closed bounded (convex weakly compact) subset of X into itself has a fixed point. We say that X satisfies the stable fixed point property (stable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2012-04, Vol.75 (6), p.3229-3234
1. Verfasser: Dominguez Benavides, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3234
container_issue 6
container_start_page 3229
container_title Nonlinear analysis
container_volume 75
creator Dominguez Benavides, T
description Let X be a Banach space. We say that X satisfies the fixed point property (weak fixed point property) if every non-expansive mapping defined from a convex closed bounded (convex weakly compact) subset of X into itself has a fixed point. We say that X satisfies the stable fixed point property (stable weak fixed point property) if the same is true for every equivalent norm which is close enough to the original one. Denote by P(X) the set formed by all equivalent norms with the topology of the uniform convergence on the unit ball of X. We prove that the subset of P(X) formed by the norms failing the fixed point property is dense in P(X) when X is a non-distortable space which fails the fixed point property. In particular, no renorming of ℓ1 can satisfy the stable fixed point property. Furthermore, we show some examples of distortable spaces failing the weak fixed point property, which can be renormed to satisfy the stable weak fixed point property. As a consequence we prove that every separable Banach space can be renormed to satisfy the stable weak fixed point property.
doi_str_mv 10.1016/j.na.2011.12.025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019623349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X11008376</els_id><sourcerecordid>1019623349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-59bb9db2f27722f288044a3642a5eeae44ac786870bee55c843253dfb002ed873</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqWwM3pkSfBH7CRsqHxKlbqAxGY5zgVcpXaw3Yr-97gqK8udTvd7p3sPoWtKSkqovF2XTpeMUFpSVhImTtCMNjUvBKPiFM0Il6wQlfw4RxcxrgkhtOZyhlYPNiYfkvUOa9fjmHRnR5v22A84fQEe7A_0ePLWJTwFP0HIu8EH7Lwr4GfSLtod4I2eJus-4yU6G_QY4eqvz9H70-Pb4qVYrp5fF_fLwnBWp0K0Xdf2HRtYXbNcm4ZUleayYloAaMiDqRvZ1KQDEMI0FWeC90NHCIM--5qjm-Pd_NP3FmJSGxsNjKN24LdR5UxayTiv2oySI2qCjzHAoKZgNzrsM3TgpForp9UhO0WZytllyd1RAtnCzkJQ0VhwBnobwCTVe_u_-Bc7Xna2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019623349</pqid></control><display><type>article</type><title>Distortion and stability of the fixed point property for non-expansive mappings</title><source>Elsevier ScienceDirect Journals</source><creator>Dominguez Benavides, T</creator><creatorcontrib>Dominguez Benavides, T</creatorcontrib><description>Let X be a Banach space. We say that X satisfies the fixed point property (weak fixed point property) if every non-expansive mapping defined from a convex closed bounded (convex weakly compact) subset of X into itself has a fixed point. We say that X satisfies the stable fixed point property (stable weak fixed point property) if the same is true for every equivalent norm which is close enough to the original one. Denote by P(X) the set formed by all equivalent norms with the topology of the uniform convergence on the unit ball of X. We prove that the subset of P(X) formed by the norms failing the fixed point property is dense in P(X) when X is a non-distortable space which fails the fixed point property. In particular, no renorming of ℓ1 can satisfy the stable fixed point property. Furthermore, we show some examples of distortable spaces failing the weak fixed point property, which can be renormed to satisfy the stable weak fixed point property. As a consequence we prove that every separable Banach space can be renormed to satisfy the stable weak fixed point property.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2011.12.025</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Banach space ; Convergence ; Distortion ; Equivalence ; Fixed point property ; Mapping ; Non-distortable spaces ; Non-expansive mapping ; Nonlinearity ; Norms ; Renormings ; Stability</subject><ispartof>Nonlinear analysis, 2012-04, Vol.75 (6), p.3229-3234</ispartof><rights>2011 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-59bb9db2f27722f288044a3642a5eeae44ac786870bee55c843253dfb002ed873</citedby><cites>FETCH-LOGICAL-c327t-59bb9db2f27722f288044a3642a5eeae44ac786870bee55c843253dfb002ed873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X11008376$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Dominguez Benavides, T</creatorcontrib><title>Distortion and stability of the fixed point property for non-expansive mappings</title><title>Nonlinear analysis</title><description>Let X be a Banach space. We say that X satisfies the fixed point property (weak fixed point property) if every non-expansive mapping defined from a convex closed bounded (convex weakly compact) subset of X into itself has a fixed point. We say that X satisfies the stable fixed point property (stable weak fixed point property) if the same is true for every equivalent norm which is close enough to the original one. Denote by P(X) the set formed by all equivalent norms with the topology of the uniform convergence on the unit ball of X. We prove that the subset of P(X) formed by the norms failing the fixed point property is dense in P(X) when X is a non-distortable space which fails the fixed point property. In particular, no renorming of ℓ1 can satisfy the stable fixed point property. Furthermore, we show some examples of distortable spaces failing the weak fixed point property, which can be renormed to satisfy the stable weak fixed point property. As a consequence we prove that every separable Banach space can be renormed to satisfy the stable weak fixed point property.</description><subject>Banach space</subject><subject>Convergence</subject><subject>Distortion</subject><subject>Equivalence</subject><subject>Fixed point property</subject><subject>Mapping</subject><subject>Non-distortable spaces</subject><subject>Non-expansive mapping</subject><subject>Nonlinearity</subject><subject>Norms</subject><subject>Renormings</subject><subject>Stability</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EEqWwM3pkSfBH7CRsqHxKlbqAxGY5zgVcpXaw3Yr-97gqK8udTvd7p3sPoWtKSkqovF2XTpeMUFpSVhImTtCMNjUvBKPiFM0Il6wQlfw4RxcxrgkhtOZyhlYPNiYfkvUOa9fjmHRnR5v22A84fQEe7A_0ePLWJTwFP0HIu8EH7Lwr4GfSLtod4I2eJus-4yU6G_QY4eqvz9H70-Pb4qVYrp5fF_fLwnBWp0K0Xdf2HRtYXbNcm4ZUleayYloAaMiDqRvZ1KQDEMI0FWeC90NHCIM--5qjm-Pd_NP3FmJSGxsNjKN24LdR5UxayTiv2oySI2qCjzHAoKZgNzrsM3TgpForp9UhO0WZytllyd1RAtnCzkJQ0VhwBnobwCTVe_u_-Bc7Xna2</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Dominguez Benavides, T</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201204</creationdate><title>Distortion and stability of the fixed point property for non-expansive mappings</title><author>Dominguez Benavides, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-59bb9db2f27722f288044a3642a5eeae44ac786870bee55c843253dfb002ed873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Banach space</topic><topic>Convergence</topic><topic>Distortion</topic><topic>Equivalence</topic><topic>Fixed point property</topic><topic>Mapping</topic><topic>Non-distortable spaces</topic><topic>Non-expansive mapping</topic><topic>Nonlinearity</topic><topic>Norms</topic><topic>Renormings</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dominguez Benavides, T</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dominguez Benavides, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distortion and stability of the fixed point property for non-expansive mappings</atitle><jtitle>Nonlinear analysis</jtitle><date>2012-04</date><risdate>2012</risdate><volume>75</volume><issue>6</issue><spage>3229</spage><epage>3234</epage><pages>3229-3234</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>Let X be a Banach space. We say that X satisfies the fixed point property (weak fixed point property) if every non-expansive mapping defined from a convex closed bounded (convex weakly compact) subset of X into itself has a fixed point. We say that X satisfies the stable fixed point property (stable weak fixed point property) if the same is true for every equivalent norm which is close enough to the original one. Denote by P(X) the set formed by all equivalent norms with the topology of the uniform convergence on the unit ball of X. We prove that the subset of P(X) formed by the norms failing the fixed point property is dense in P(X) when X is a non-distortable space which fails the fixed point property. In particular, no renorming of ℓ1 can satisfy the stable fixed point property. Furthermore, we show some examples of distortable spaces failing the weak fixed point property, which can be renormed to satisfy the stable weak fixed point property. As a consequence we prove that every separable Banach space can be renormed to satisfy the stable weak fixed point property.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2011.12.025</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2012-04, Vol.75 (6), p.3229-3234
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_1019623349
source Elsevier ScienceDirect Journals
subjects Banach space
Convergence
Distortion
Equivalence
Fixed point property
Mapping
Non-distortable spaces
Non-expansive mapping
Nonlinearity
Norms
Renormings
Stability
title Distortion and stability of the fixed point property for non-expansive mappings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A51%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distortion%20and%20stability%20of%20the%20fixed%20point%20property%20for%20non-expansive%20mappings&rft.jtitle=Nonlinear%20analysis&rft.au=Dominguez%20Benavides,%20T&rft.date=2012-04&rft.volume=75&rft.issue=6&rft.spage=3229&rft.epage=3234&rft.pages=3229-3234&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2011.12.025&rft_dat=%3Cproquest_cross%3E1019623349%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019623349&rft_id=info:pmid/&rft_els_id=S0362546X11008376&rfr_iscdi=true