Simplified swarm optimization in disassembly sequencing problems with learning effects

In classical disassembly sequencing problems (DSPs), the disassembly time of each item is assumed fixed and sequence-independent. From a practical perspective, the actual processing time of a component could depend on its position in the sequence. In this paper, a novel DSP called the learning-effec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & operations research 2012-09, Vol.39 (9), p.2168-2177
1. Verfasser: Yeh, Wei-Chang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2177
container_issue 9
container_start_page 2168
container_title Computers & operations research
container_volume 39
creator Yeh, Wei-Chang
description In classical disassembly sequencing problems (DSPs), the disassembly time of each item is assumed fixed and sequence-independent. From a practical perspective, the actual processing time of a component could depend on its position in the sequence. In this paper, a novel DSP called the learning-effect DSP (LDSP) is proposed by considering the general effects of learning in DSP. A modified simplified swarm optimization (SSO) method developed by revising the most recently published variants of SSO is proposed to solve this new problem. The presented SSO scheme improves the update mechanism, which is the core of any soft computing based methods, and revises the self-adaptive parameter control procedure. The conducted computational experiment with up to 500 components reflects the effectiveness of the modified SSO method in terms of final accuracy, convergence speed, and robustness. ► We model a novel disassembly sequencing problems by considering the learning-effect DSP (LDSP). ► We modified the simplified swarm optimization (SSO) to solve LDSP. ► We improved the update mechanism and revised the self-adaptive parameter control procedure. ► The conducted computational experiment with up to 500 components reflects the effectiveness of the modified SSO method in terms of final accuracy, convergence speed, and robustness.
doi_str_mv 10.1016/j.cor.2011.10.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019623142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305054811003157</els_id><sourcerecordid>2560585121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-337684080b7215ae30d2252d0fae965b3914540c9ec324922d3c04110d6d52a93</originalsourceid><addsrcrecordid>eNp9kEtrGzEURkVJoK7bH9DdEAh0M67eMyKrYvICQxZ50J2QpTutzDwc3XGN--ujwaaLLqKN0OW7Rx-HkK-MLhhl-vtm4Ye04JSx_F5QXn0gM1ZXoqy0-nlGZlRQVVIl64_kE-KG5lNxNiMvj7HbtrGJEArcu9QVw3aMXfzrxjj0ReyLENEhQrduDwXC6w56H_tfxTYN6xY6LPZx_F204FI_jaFpwI_4mZw3rkX4crrn5Pnm-ml5V64ebu-XP1all6weSyEqXUta03UuoxwIGjhXPNDGgdFqLQyTSlJvwAsuDedBeCoZo0EHxZ0Rc_LtyM11cjUcbRfRQ9u6HoYd2uzGaC6Y5Dl68V90M-xSn9tZw5TRlTQTjx1DPg2ICRq7TbFz6ZBJE0zbjc2i7SR6GmXReefyBHboXdsklw3hv0WuNDW1nnJXxxxkIX8iJIs-ZpsQYsrObBjiO7-8Aey7klc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>915967499</pqid></control><display><type>article</type><title>Simplified swarm optimization in disassembly sequencing problems with learning effects</title><source>Elsevier ScienceDirect Journals</source><creator>Yeh, Wei-Chang</creator><creatorcontrib>Yeh, Wei-Chang</creatorcontrib><description>In classical disassembly sequencing problems (DSPs), the disassembly time of each item is assumed fixed and sequence-independent. From a practical perspective, the actual processing time of a component could depend on its position in the sequence. In this paper, a novel DSP called the learning-effect DSP (LDSP) is proposed by considering the general effects of learning in DSP. A modified simplified swarm optimization (SSO) method developed by revising the most recently published variants of SSO is proposed to solve this new problem. The presented SSO scheme improves the update mechanism, which is the core of any soft computing based methods, and revises the self-adaptive parameter control procedure. The conducted computational experiment with up to 500 components reflects the effectiveness of the modified SSO method in terms of final accuracy, convergence speed, and robustness. ► We model a novel disassembly sequencing problems by considering the learning-effect DSP (LDSP). ► We modified the simplified swarm optimization (SSO) to solve LDSP. ► We improved the update mechanism and revised the self-adaptive parameter control procedure. ► The conducted computational experiment with up to 500 components reflects the effectiveness of the modified SSO method in terms of final accuracy, convergence speed, and robustness.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>EISSN: 0305-0548</identifier><identifier>DOI: 10.1016/j.cor.2011.10.027</identifier><identifier>CODEN: CMORAP</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Assembly lines ; Digital signal processing ; Disassembly ; Disassembly sequencing problem ; Dismantling ; Exact sciences and technology ; Inventory control, production control. Distribution ; Learning ; Learning effects ; Mechanical engineering. Machine design ; Operational research and scientific management ; Operational research. Management science ; Optimization ; Optimization algorithms ; Robustness ; Self-adaptive parameter control ; Sequencing ; Sequential scheduling ; Simplified swarm optimization (SSO) ; Soft computing ; Studies ; Update mechanism</subject><ispartof>Computers &amp; operations research, 2012-09, Vol.39 (9), p.2168-2177</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Sep 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-337684080b7215ae30d2252d0fae965b3914540c9ec324922d3c04110d6d52a93</citedby><cites>FETCH-LOGICAL-c418t-337684080b7215ae30d2252d0fae965b3914540c9ec324922d3c04110d6d52a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0305054811003157$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25609867$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yeh, Wei-Chang</creatorcontrib><title>Simplified swarm optimization in disassembly sequencing problems with learning effects</title><title>Computers &amp; operations research</title><description>In classical disassembly sequencing problems (DSPs), the disassembly time of each item is assumed fixed and sequence-independent. From a practical perspective, the actual processing time of a component could depend on its position in the sequence. In this paper, a novel DSP called the learning-effect DSP (LDSP) is proposed by considering the general effects of learning in DSP. A modified simplified swarm optimization (SSO) method developed by revising the most recently published variants of SSO is proposed to solve this new problem. The presented SSO scheme improves the update mechanism, which is the core of any soft computing based methods, and revises the self-adaptive parameter control procedure. The conducted computational experiment with up to 500 components reflects the effectiveness of the modified SSO method in terms of final accuracy, convergence speed, and robustness. ► We model a novel disassembly sequencing problems by considering the learning-effect DSP (LDSP). ► We modified the simplified swarm optimization (SSO) to solve LDSP. ► We improved the update mechanism and revised the self-adaptive parameter control procedure. ► The conducted computational experiment with up to 500 components reflects the effectiveness of the modified SSO method in terms of final accuracy, convergence speed, and robustness.</description><subject>Applied sciences</subject><subject>Assembly lines</subject><subject>Digital signal processing</subject><subject>Disassembly</subject><subject>Disassembly sequencing problem</subject><subject>Dismantling</subject><subject>Exact sciences and technology</subject><subject>Inventory control, production control. Distribution</subject><subject>Learning</subject><subject>Learning effects</subject><subject>Mechanical engineering. Machine design</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Robustness</subject><subject>Self-adaptive parameter control</subject><subject>Sequencing</subject><subject>Sequential scheduling</subject><subject>Simplified swarm optimization (SSO)</subject><subject>Soft computing</subject><subject>Studies</subject><subject>Update mechanism</subject><issn>0305-0548</issn><issn>1873-765X</issn><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kEtrGzEURkVJoK7bH9DdEAh0M67eMyKrYvICQxZ50J2QpTutzDwc3XGN--ujwaaLLqKN0OW7Rx-HkK-MLhhl-vtm4Ye04JSx_F5QXn0gM1ZXoqy0-nlGZlRQVVIl64_kE-KG5lNxNiMvj7HbtrGJEArcu9QVw3aMXfzrxjj0ReyLENEhQrduDwXC6w56H_tfxTYN6xY6LPZx_F204FI_jaFpwI_4mZw3rkX4crrn5Pnm-ml5V64ebu-XP1all6weSyEqXUta03UuoxwIGjhXPNDGgdFqLQyTSlJvwAsuDedBeCoZo0EHxZ0Rc_LtyM11cjUcbRfRQ9u6HoYd2uzGaC6Y5Dl68V90M-xSn9tZw5TRlTQTjx1DPg2ICRq7TbFz6ZBJE0zbjc2i7SR6GmXReefyBHboXdsklw3hv0WuNDW1nnJXxxxkIX8iJIs-ZpsQYsrObBjiO7-8Aey7klc</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Yeh, Wei-Chang</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120901</creationdate><title>Simplified swarm optimization in disassembly sequencing problems with learning effects</title><author>Yeh, Wei-Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-337684080b7215ae30d2252d0fae965b3914540c9ec324922d3c04110d6d52a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Assembly lines</topic><topic>Digital signal processing</topic><topic>Disassembly</topic><topic>Disassembly sequencing problem</topic><topic>Dismantling</topic><topic>Exact sciences and technology</topic><topic>Inventory control, production control. Distribution</topic><topic>Learning</topic><topic>Learning effects</topic><topic>Mechanical engineering. Machine design</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Robustness</topic><topic>Self-adaptive parameter control</topic><topic>Sequencing</topic><topic>Sequential scheduling</topic><topic>Simplified swarm optimization (SSO)</topic><topic>Soft computing</topic><topic>Studies</topic><topic>Update mechanism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yeh, Wei-Chang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yeh, Wei-Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simplified swarm optimization in disassembly sequencing problems with learning effects</atitle><jtitle>Computers &amp; operations research</jtitle><date>2012-09-01</date><risdate>2012</risdate><volume>39</volume><issue>9</issue><spage>2168</spage><epage>2177</epage><pages>2168-2177</pages><issn>0305-0548</issn><eissn>1873-765X</eissn><eissn>0305-0548</eissn><coden>CMORAP</coden><abstract>In classical disassembly sequencing problems (DSPs), the disassembly time of each item is assumed fixed and sequence-independent. From a practical perspective, the actual processing time of a component could depend on its position in the sequence. In this paper, a novel DSP called the learning-effect DSP (LDSP) is proposed by considering the general effects of learning in DSP. A modified simplified swarm optimization (SSO) method developed by revising the most recently published variants of SSO is proposed to solve this new problem. The presented SSO scheme improves the update mechanism, which is the core of any soft computing based methods, and revises the self-adaptive parameter control procedure. The conducted computational experiment with up to 500 components reflects the effectiveness of the modified SSO method in terms of final accuracy, convergence speed, and robustness. ► We model a novel disassembly sequencing problems by considering the learning-effect DSP (LDSP). ► We modified the simplified swarm optimization (SSO) to solve LDSP. ► We improved the update mechanism and revised the self-adaptive parameter control procedure. ► The conducted computational experiment with up to 500 components reflects the effectiveness of the modified SSO method in terms of final accuracy, convergence speed, and robustness.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cor.2011.10.027</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0305-0548
ispartof Computers & operations research, 2012-09, Vol.39 (9), p.2168-2177
issn 0305-0548
1873-765X
0305-0548
language eng
recordid cdi_proquest_miscellaneous_1019623142
source Elsevier ScienceDirect Journals
subjects Applied sciences
Assembly lines
Digital signal processing
Disassembly
Disassembly sequencing problem
Dismantling
Exact sciences and technology
Inventory control, production control. Distribution
Learning
Learning effects
Mechanical engineering. Machine design
Operational research and scientific management
Operational research. Management science
Optimization
Optimization algorithms
Robustness
Self-adaptive parameter control
Sequencing
Sequential scheduling
Simplified swarm optimization (SSO)
Soft computing
Studies
Update mechanism
title Simplified swarm optimization in disassembly sequencing problems with learning effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A53%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simplified%20swarm%20optimization%20in%20disassembly%20sequencing%20problems%20with%20learning%20effects&rft.jtitle=Computers%20&%20operations%20research&rft.au=Yeh,%20Wei-Chang&rft.date=2012-09-01&rft.volume=39&rft.issue=9&rft.spage=2168&rft.epage=2177&rft.pages=2168-2177&rft.issn=0305-0548&rft.eissn=1873-765X&rft.coden=CMORAP&rft_id=info:doi/10.1016/j.cor.2011.10.027&rft_dat=%3Cproquest_cross%3E2560585121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=915967499&rft_id=info:pmid/&rft_els_id=S0305054811003157&rfr_iscdi=true