System simulation models for on-board hydrogen storage systems

System simulation models for automotive on-board hydrogen storage systems provide a measure of the ability of an engineered system and storage media to meet system performance targets. Thoughtful engineering design for a particular storage media can help the system achieve desired performance goals....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2012-02, Vol.37 (3), p.2862-2873
Hauptverfasser: Kumar, Sudarshan, Raju, Mandhapati, Senthil Kumar, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2873
container_issue 3
container_start_page 2862
container_title International journal of hydrogen energy
container_volume 37
creator Kumar, Sudarshan
Raju, Mandhapati
Senthil Kumar, V.
description System simulation models for automotive on-board hydrogen storage systems provide a measure of the ability of an engineered system and storage media to meet system performance targets. Thoughtful engineering design for a particular storage media can help the system achieve desired performance goals. This paper presents system simulation models for two different advanced hydrogen storage technologies – a cryo-adsorption system and a metal hydride system. AX-21 superactivated carbon and sodium alanate are employed as representative storage media for the cryo-adsorbent system and the metal hydride system respectively. Lumped parameter models incorporating guidance from detailed transport models are employed in building the system simulation models. Simulation results to test the storage systems’ ability to meet fuel cell demand for different drive cycles and varying operating conditions are presented. Systems are engineered to provide the ability to refuel a vehicle in a short time guided by DOE targets. Gravimetric and volumetric hydrogen densities are computed for the engineered systems and compared to the DOE system goals. ► System simulation models for automotive on-board hydrogen storage systems. ► System model for a metal hydride system. ► System model for a cryo-adsorption system. ► Drive cycle simulations for on-board hydrogen storage systems. ► Cold start capability for on-board hydrogen storage systems.
doi_str_mv 10.1016/j.ijhydene.2011.04.182
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019622830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319911010494</els_id><sourcerecordid>1019622830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-c4bc467c1fa8c59c900cd7f08a955cb18e92ee2bb6a916c5a6eedfaeed57b2433</originalsourceid><addsrcrecordid>eNqFkE1LxDAURYMoOI7-BelGcNOapGnabEQZ_IIBF-o6pOnrmNI2Y15HmH9vxlG3bu7bnHsfHELOGc0YZfKqy1z3vm1ghIxTxjIqMlbxAzJjVanSXFTlIZnRXNI0Z0odkxPEjlJWUqFm5PplixMMCbph05vJ-TEZfAM9Jq0PiR_T2pvQJHE_-BWMCU4-mBUk-F3DU3LUmh7h7OfOydv93eviMV0-PzwtbpepFYxPMWsrZGlZaypbKKsotU3Z0sqoorA1q0BxAF7X0igmbWEkQNOaGEVZc5Hnc3K5310H_7EBnPTg0ELfmxH8BnUUoSTnVU4jKveoDR4xQKvXwQ0mbCO046Tu9K8wvROmqdBRWCxe_PwwaE3fBjNah39tXggpS7XjbvZctASfDoJG62C00LgAdtKNd_-9-gK_kIYk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019622830</pqid></control><display><type>article</type><title>System simulation models for on-board hydrogen storage systems</title><source>Elsevier ScienceDirect Journals</source><creator>Kumar, Sudarshan ; Raju, Mandhapati ; Senthil Kumar, V.</creator><creatorcontrib>Kumar, Sudarshan ; Raju, Mandhapati ; Senthil Kumar, V.</creatorcontrib><description>System simulation models for automotive on-board hydrogen storage systems provide a measure of the ability of an engineered system and storage media to meet system performance targets. Thoughtful engineering design for a particular storage media can help the system achieve desired performance goals. This paper presents system simulation models for two different advanced hydrogen storage technologies – a cryo-adsorption system and a metal hydride system. AX-21 superactivated carbon and sodium alanate are employed as representative storage media for the cryo-adsorbent system and the metal hydride system respectively. Lumped parameter models incorporating guidance from detailed transport models are employed in building the system simulation models. Simulation results to test the storage systems’ ability to meet fuel cell demand for different drive cycles and varying operating conditions are presented. Systems are engineered to provide the ability to refuel a vehicle in a short time guided by DOE targets. Gravimetric and volumetric hydrogen densities are computed for the engineered systems and compared to the DOE system goals. ► System simulation models for automotive on-board hydrogen storage systems. ► System model for a metal hydride system. ► System model for a cryo-adsorption system. ► Drive cycle simulations for on-board hydrogen storage systems. ► Cold start capability for on-board hydrogen storage systems.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2011.04.182</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Automotive engineering ; Cryo-adsorption ; Energy ; Exact sciences and technology ; Fuels ; Hydrogen ; Hydrogen storage ; Sodium alanate ; System simulation models</subject><ispartof>International journal of hydrogen energy, 2012-02, Vol.37 (3), p.2862-2873</ispartof><rights>2011 Hydrogen Energy Publications, LLC.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-c4bc467c1fa8c59c900cd7f08a955cb18e92ee2bb6a916c5a6eedfaeed57b2433</citedby><cites>FETCH-LOGICAL-c412t-c4bc467c1fa8c59c900cd7f08a955cb18e92ee2bb6a916c5a6eedfaeed57b2433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijhydene.2011.04.182$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,778,782,787,788,3539,23913,23914,25123,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25466792$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Sudarshan</creatorcontrib><creatorcontrib>Raju, Mandhapati</creatorcontrib><creatorcontrib>Senthil Kumar, V.</creatorcontrib><title>System simulation models for on-board hydrogen storage systems</title><title>International journal of hydrogen energy</title><description>System simulation models for automotive on-board hydrogen storage systems provide a measure of the ability of an engineered system and storage media to meet system performance targets. Thoughtful engineering design for a particular storage media can help the system achieve desired performance goals. This paper presents system simulation models for two different advanced hydrogen storage technologies – a cryo-adsorption system and a metal hydride system. AX-21 superactivated carbon and sodium alanate are employed as representative storage media for the cryo-adsorbent system and the metal hydride system respectively. Lumped parameter models incorporating guidance from detailed transport models are employed in building the system simulation models. Simulation results to test the storage systems’ ability to meet fuel cell demand for different drive cycles and varying operating conditions are presented. Systems are engineered to provide the ability to refuel a vehicle in a short time guided by DOE targets. Gravimetric and volumetric hydrogen densities are computed for the engineered systems and compared to the DOE system goals. ► System simulation models for automotive on-board hydrogen storage systems. ► System model for a metal hydride system. ► System model for a cryo-adsorption system. ► Drive cycle simulations for on-board hydrogen storage systems. ► Cold start capability for on-board hydrogen storage systems.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Automotive engineering</subject><subject>Cryo-adsorption</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Sodium alanate</subject><subject>System simulation models</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAURYMoOI7-BelGcNOapGnabEQZ_IIBF-o6pOnrmNI2Y15HmH9vxlG3bu7bnHsfHELOGc0YZfKqy1z3vm1ghIxTxjIqMlbxAzJjVanSXFTlIZnRXNI0Z0odkxPEjlJWUqFm5PplixMMCbph05vJ-TEZfAM9Jq0PiR_T2pvQJHE_-BWMCU4-mBUk-F3DU3LUmh7h7OfOydv93eviMV0-PzwtbpepFYxPMWsrZGlZaypbKKsotU3Z0sqoorA1q0BxAF7X0igmbWEkQNOaGEVZc5Hnc3K5310H_7EBnPTg0ELfmxH8BnUUoSTnVU4jKveoDR4xQKvXwQ0mbCO046Tu9K8wvROmqdBRWCxe_PwwaE3fBjNah39tXggpS7XjbvZctASfDoJG62C00LgAdtKNd_-9-gK_kIYk</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Kumar, Sudarshan</creator><creator>Raju, Mandhapati</creator><creator>Senthil Kumar, V.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20120201</creationdate><title>System simulation models for on-board hydrogen storage systems</title><author>Kumar, Sudarshan ; Raju, Mandhapati ; Senthil Kumar, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-c4bc467c1fa8c59c900cd7f08a955cb18e92ee2bb6a916c5a6eedfaeed57b2433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Automotive engineering</topic><topic>Cryo-adsorption</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Sodium alanate</topic><topic>System simulation models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Sudarshan</creatorcontrib><creatorcontrib>Raju, Mandhapati</creatorcontrib><creatorcontrib>Senthil Kumar, V.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Sudarshan</au><au>Raju, Mandhapati</au><au>Senthil Kumar, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>System simulation models for on-board hydrogen storage systems</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2012-02-01</date><risdate>2012</risdate><volume>37</volume><issue>3</issue><spage>2862</spage><epage>2873</epage><pages>2862-2873</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>System simulation models for automotive on-board hydrogen storage systems provide a measure of the ability of an engineered system and storage media to meet system performance targets. Thoughtful engineering design for a particular storage media can help the system achieve desired performance goals. This paper presents system simulation models for two different advanced hydrogen storage technologies – a cryo-adsorption system and a metal hydride system. AX-21 superactivated carbon and sodium alanate are employed as representative storage media for the cryo-adsorbent system and the metal hydride system respectively. Lumped parameter models incorporating guidance from detailed transport models are employed in building the system simulation models. Simulation results to test the storage systems’ ability to meet fuel cell demand for different drive cycles and varying operating conditions are presented. Systems are engineered to provide the ability to refuel a vehicle in a short time guided by DOE targets. Gravimetric and volumetric hydrogen densities are computed for the engineered systems and compared to the DOE system goals. ► System simulation models for automotive on-board hydrogen storage systems. ► System model for a metal hydride system. ► System model for a cryo-adsorption system. ► Drive cycle simulations for on-board hydrogen storage systems. ► Cold start capability for on-board hydrogen storage systems.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2011.04.182</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International journal of hydrogen energy, 2012-02, Vol.37 (3), p.2862-2873
issn 0360-3199
1879-3487
language eng
recordid cdi_proquest_miscellaneous_1019622830
source Elsevier ScienceDirect Journals
subjects Alternative fuels. Production and utilization
Applied sciences
Automotive engineering
Cryo-adsorption
Energy
Exact sciences and technology
Fuels
Hydrogen
Hydrogen storage
Sodium alanate
System simulation models
title System simulation models for on-board hydrogen storage systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A14%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=System%20simulation%20models%20for%20on-board%20hydrogen%20storage%20systems&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Kumar,%20Sudarshan&rft.date=2012-02-01&rft.volume=37&rft.issue=3&rft.spage=2862&rft.epage=2873&rft.pages=2862-2873&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2011.04.182&rft_dat=%3Cproquest_cross%3E1019622830%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019622830&rft_id=info:pmid/&rft_els_id=S0360319911010494&rfr_iscdi=true