Alanate–borohydride material systems for hydrogen storage applications
Alteration of the thermodynamic stability of selected borohydride/alanate systems, including the combination of LiBH 4 with NaAlH 4 and LiBH 4 with CaCl 2 and LiAlH 4, was investigated to determine the possibility of forming intermediate stability mixed AlH 4 −–BH 4 − phase. Facile metathesis exchan...
Gespeichert in:
Veröffentlicht in: | International journal of hydrogen energy 2012-02, Vol.37 (3), p.2388-2396 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2396 |
---|---|
container_issue | 3 |
container_start_page | 2388 |
container_title | International journal of hydrogen energy |
container_volume | 37 |
creator | Mohtadi, Rana Sivasubramanian, PremKumar Hwang, Son-Jong Stowe, Ashley Gray, Joshua Matsunaga, Tomoya Zidan, Ragaiy |
description | Alteration of the thermodynamic stability of selected borohydride/alanate systems, including the combination of LiBH
4 with NaAlH
4 and LiBH
4 with CaCl
2 and LiAlH
4, was investigated to determine the possibility of forming intermediate stability mixed AlH
4
−–BH
4
− phase.
Facile metathesis exchange reactions were observed when NaAlH
4 was combined with LiBH
4 resulting in the formation of LiAlH
4 and NaBH
4. Thermal analysis of this system showed that the 1
st and 2
nd decomposition of LiAlH
4 occurred irrespective of NaBH
4 illustrating the absence molecular level interaction between the AlH
4
− and the BH
4
− anions. On the other hand, in the case of CaCl
2, LiAlH
4, LiBH
4 combination, the results showed the formation of a calcium alanate type phase. Evaluation of the thermal property of this system showed an endothermic one step decomposition between 130
°C and 200
°C (2.3 wt% loss). Structural examination of this calcium alanate type phase revealed a different local coordination geometry of AlH
4
− from that observed in calcium alanate. The formation and properties of this phase are being attributed to molecular level AlH
4
−–BH
4
− interactions. These findings provide a pathway toward designing novel alanates-borohydrides systems for hydrogen storage applications. This article will show the methodologies followed and explain the results obtained.
► Combination of alanates with borohydrides researched. ► LiBH
4-NaAlH
4 combination resulted in metathesis reaction. ► The ternary system of LiBH
4, CaCl
2, LiAlH
4 led to a new calcium alanate phase. ► Thermal properties of new phase showed novel stabilization in borohydride presence. ► For the first time, evidence of unique borohydrides interactions with alanates. |
doi_str_mv | 10.1016/j.ijhydene.2011.10.076 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019622119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319911024505</els_id><sourcerecordid>1019622119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-1cc7fefc9d3e4954202cd10338d0e2fa32274873ffc561204b740bc0402a9ba33</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhS0EEqVwBZQNEpsE_8Wud1QVUKRKbGAdOc64OErjYqdI3XEHbshJcFRgy2qkN9_8vIfQJcEFwUTctIVrX_cN9FBQTEgSCyzFEZqQmVQ54zN5jCaYCZwzotQpOouxxZhIzNUELeed7vUAXx-ftQ8-7QmugWyTpOB0l8V9HGATM-tDNjb9GvosDj7oNWR6u-2c0YPzfTxHJ1Z3ES5-6hS93N89L5b56unhcTFf5YbJcsiJMdKCNaphwFXJKaamIZixWYOBWs0oleljZq0pBaGY15Lj2mCOqVa1ZmyKrg97t8G_7SAO1cZFA12yAX4XqxSJEpQSohIqDqgJPsYAttoGt9Fhn6CRE1Vb_UZXjdGNeoouDV793NDR6M4G3RsX_6ZpyYWQnCbu9sBBMvzuIFTROOgNNC6AGarGu_9OfQNtooml</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019622119</pqid></control><display><type>article</type><title>Alanate–borohydride material systems for hydrogen storage applications</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Mohtadi, Rana ; Sivasubramanian, PremKumar ; Hwang, Son-Jong ; Stowe, Ashley ; Gray, Joshua ; Matsunaga, Tomoya ; Zidan, Ragaiy</creator><creatorcontrib>Mohtadi, Rana ; Sivasubramanian, PremKumar ; Hwang, Son-Jong ; Stowe, Ashley ; Gray, Joshua ; Matsunaga, Tomoya ; Zidan, Ragaiy</creatorcontrib><description>Alteration of the thermodynamic stability of selected borohydride/alanate systems, including the combination of LiBH
4 with NaAlH
4 and LiBH
4 with CaCl
2 and LiAlH
4, was investigated to determine the possibility of forming intermediate stability mixed AlH
4
−–BH
4
− phase.
Facile metathesis exchange reactions were observed when NaAlH
4 was combined with LiBH
4 resulting in the formation of LiAlH
4 and NaBH
4. Thermal analysis of this system showed that the 1
st and 2
nd decomposition of LiAlH
4 occurred irrespective of NaBH
4 illustrating the absence molecular level interaction between the AlH
4
− and the BH
4
− anions. On the other hand, in the case of CaCl
2, LiAlH
4, LiBH
4 combination, the results showed the formation of a calcium alanate type phase. Evaluation of the thermal property of this system showed an endothermic one step decomposition between 130
°C and 200
°C (2.3 wt% loss). Structural examination of this calcium alanate type phase revealed a different local coordination geometry of AlH
4
− from that observed in calcium alanate. The formation and properties of this phase are being attributed to molecular level AlH
4
−–BH
4
− interactions. These findings provide a pathway toward designing novel alanates-borohydrides systems for hydrogen storage applications. This article will show the methodologies followed and explain the results obtained.
► Combination of alanates with borohydrides researched. ► LiBH
4-NaAlH
4 combination resulted in metathesis reaction. ► The ternary system of LiBH
4, CaCl
2, LiAlH
4 led to a new calcium alanate phase. ► Thermal properties of new phase showed novel stabilization in borohydride presence. ► For the first time, evidence of unique borohydrides interactions with alanates.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2011.10.076</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alanate ; Alterations ; Alternative fuels. Production and utilization ; Applied sciences ; Energy ; Exact sciences and technology ; Fuels ; Hydrogen ; Lithium borohydride ; MAS NMR ; Onboard hydrogen storage ; Thermal properties</subject><ispartof>International journal of hydrogen energy, 2012-02, Vol.37 (3), p.2388-2396</ispartof><rights>2011 Hydrogen Energy Publications, LLC.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-1cc7fefc9d3e4954202cd10338d0e2fa32274873ffc561204b740bc0402a9ba33</citedby><cites>FETCH-LOGICAL-c375t-1cc7fefc9d3e4954202cd10338d0e2fa32274873ffc561204b740bc0402a9ba33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijhydene.2011.10.076$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25466742$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohtadi, Rana</creatorcontrib><creatorcontrib>Sivasubramanian, PremKumar</creatorcontrib><creatorcontrib>Hwang, Son-Jong</creatorcontrib><creatorcontrib>Stowe, Ashley</creatorcontrib><creatorcontrib>Gray, Joshua</creatorcontrib><creatorcontrib>Matsunaga, Tomoya</creatorcontrib><creatorcontrib>Zidan, Ragaiy</creatorcontrib><title>Alanate–borohydride material systems for hydrogen storage applications</title><title>International journal of hydrogen energy</title><description>Alteration of the thermodynamic stability of selected borohydride/alanate systems, including the combination of LiBH
4 with NaAlH
4 and LiBH
4 with CaCl
2 and LiAlH
4, was investigated to determine the possibility of forming intermediate stability mixed AlH
4
−–BH
4
− phase.
Facile metathesis exchange reactions were observed when NaAlH
4 was combined with LiBH
4 resulting in the formation of LiAlH
4 and NaBH
4. Thermal analysis of this system showed that the 1
st and 2
nd decomposition of LiAlH
4 occurred irrespective of NaBH
4 illustrating the absence molecular level interaction between the AlH
4
− and the BH
4
− anions. On the other hand, in the case of CaCl
2, LiAlH
4, LiBH
4 combination, the results showed the formation of a calcium alanate type phase. Evaluation of the thermal property of this system showed an endothermic one step decomposition between 130
°C and 200
°C (2.3 wt% loss). Structural examination of this calcium alanate type phase revealed a different local coordination geometry of AlH
4
− from that observed in calcium alanate. The formation and properties of this phase are being attributed to molecular level AlH
4
−–BH
4
− interactions. These findings provide a pathway toward designing novel alanates-borohydrides systems for hydrogen storage applications. This article will show the methodologies followed and explain the results obtained.
► Combination of alanates with borohydrides researched. ► LiBH
4-NaAlH
4 combination resulted in metathesis reaction. ► The ternary system of LiBH
4, CaCl
2, LiAlH
4 led to a new calcium alanate phase. ► Thermal properties of new phase showed novel stabilization in borohydride presence. ► For the first time, evidence of unique borohydrides interactions with alanates.</description><subject>Alanate</subject><subject>Alterations</subject><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Hydrogen</subject><subject>Lithium borohydride</subject><subject>MAS NMR</subject><subject>Onboard hydrogen storage</subject><subject>Thermal properties</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAQhS0EEqVwBZQNEpsE_8Wud1QVUKRKbGAdOc64OErjYqdI3XEHbshJcFRgy2qkN9_8vIfQJcEFwUTctIVrX_cN9FBQTEgSCyzFEZqQmVQ54zN5jCaYCZwzotQpOouxxZhIzNUELeed7vUAXx-ftQ8-7QmugWyTpOB0l8V9HGATM-tDNjb9GvosDj7oNWR6u-2c0YPzfTxHJ1Z3ES5-6hS93N89L5b56unhcTFf5YbJcsiJMdKCNaphwFXJKaamIZixWYOBWs0oleljZq0pBaGY15Lj2mCOqVa1ZmyKrg97t8G_7SAO1cZFA12yAX4XqxSJEpQSohIqDqgJPsYAttoGt9Fhn6CRE1Vb_UZXjdGNeoouDV793NDR6M4G3RsX_6ZpyYWQnCbu9sBBMvzuIFTROOgNNC6AGarGu_9OfQNtooml</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Mohtadi, Rana</creator><creator>Sivasubramanian, PremKumar</creator><creator>Hwang, Son-Jong</creator><creator>Stowe, Ashley</creator><creator>Gray, Joshua</creator><creator>Matsunaga, Tomoya</creator><creator>Zidan, Ragaiy</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20120201</creationdate><title>Alanate–borohydride material systems for hydrogen storage applications</title><author>Mohtadi, Rana ; Sivasubramanian, PremKumar ; Hwang, Son-Jong ; Stowe, Ashley ; Gray, Joshua ; Matsunaga, Tomoya ; Zidan, Ragaiy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-1cc7fefc9d3e4954202cd10338d0e2fa32274873ffc561204b740bc0402a9ba33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alanate</topic><topic>Alterations</topic><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Hydrogen</topic><topic>Lithium borohydride</topic><topic>MAS NMR</topic><topic>Onboard hydrogen storage</topic><topic>Thermal properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohtadi, Rana</creatorcontrib><creatorcontrib>Sivasubramanian, PremKumar</creatorcontrib><creatorcontrib>Hwang, Son-Jong</creatorcontrib><creatorcontrib>Stowe, Ashley</creatorcontrib><creatorcontrib>Gray, Joshua</creatorcontrib><creatorcontrib>Matsunaga, Tomoya</creatorcontrib><creatorcontrib>Zidan, Ragaiy</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohtadi, Rana</au><au>Sivasubramanian, PremKumar</au><au>Hwang, Son-Jong</au><au>Stowe, Ashley</au><au>Gray, Joshua</au><au>Matsunaga, Tomoya</au><au>Zidan, Ragaiy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alanate–borohydride material systems for hydrogen storage applications</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2012-02-01</date><risdate>2012</risdate><volume>37</volume><issue>3</issue><spage>2388</spage><epage>2396</epage><pages>2388-2396</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>Alteration of the thermodynamic stability of selected borohydride/alanate systems, including the combination of LiBH
4 with NaAlH
4 and LiBH
4 with CaCl
2 and LiAlH
4, was investigated to determine the possibility of forming intermediate stability mixed AlH
4
−–BH
4
− phase.
Facile metathesis exchange reactions were observed when NaAlH
4 was combined with LiBH
4 resulting in the formation of LiAlH
4 and NaBH
4. Thermal analysis of this system showed that the 1
st and 2
nd decomposition of LiAlH
4 occurred irrespective of NaBH
4 illustrating the absence molecular level interaction between the AlH
4
− and the BH
4
− anions. On the other hand, in the case of CaCl
2, LiAlH
4, LiBH
4 combination, the results showed the formation of a calcium alanate type phase. Evaluation of the thermal property of this system showed an endothermic one step decomposition between 130
°C and 200
°C (2.3 wt% loss). Structural examination of this calcium alanate type phase revealed a different local coordination geometry of AlH
4
− from that observed in calcium alanate. The formation and properties of this phase are being attributed to molecular level AlH
4
−–BH
4
− interactions. These findings provide a pathway toward designing novel alanates-borohydrides systems for hydrogen storage applications. This article will show the methodologies followed and explain the results obtained.
► Combination of alanates with borohydrides researched. ► LiBH
4-NaAlH
4 combination resulted in metathesis reaction. ► The ternary system of LiBH
4, CaCl
2, LiAlH
4 led to a new calcium alanate phase. ► Thermal properties of new phase showed novel stabilization in borohydride presence. ► For the first time, evidence of unique borohydrides interactions with alanates.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2011.10.076</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2012-02, Vol.37 (3), p.2388-2396 |
issn | 0360-3199 1879-3487 |
language | eng |
recordid | cdi_proquest_miscellaneous_1019622119 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Alanate Alterations Alternative fuels. Production and utilization Applied sciences Energy Exact sciences and technology Fuels Hydrogen Lithium borohydride MAS NMR Onboard hydrogen storage Thermal properties |
title | Alanate–borohydride material systems for hydrogen storage applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A38%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alanate%E2%80%93borohydride%20material%20systems%20for%20hydrogen%20storage%20applications&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Mohtadi,%20Rana&rft.date=2012-02-01&rft.volume=37&rft.issue=3&rft.spage=2388&rft.epage=2396&rft.pages=2388-2396&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2011.10.076&rft_dat=%3Cproquest_cross%3E1019622119%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019622119&rft_id=info:pmid/&rft_els_id=S0360319911024505&rfr_iscdi=true |