On Electron Transport through Geobacter Biofilms

Geobacter spp. can form a biofilm that is more than 20 μm thick on an anode surface by utilizing the anode as a terminal respiratory electron acceptor. Just how microbes transport electrons through a thick biofilm and across the biofilm/anode interface, and what determines the upper limit to biofilm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2012-06, Vol.5 (6), p.1099-1105
Hauptverfasser: Bond, Daniel R., Strycharz-Glaven, Sarah M., Tender, Leonard M., Torres, César I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1105
container_issue 6
container_start_page 1099
container_title ChemSusChem
container_volume 5
creator Bond, Daniel R.
Strycharz-Glaven, Sarah M.
Tender, Leonard M.
Torres, César I.
description Geobacter spp. can form a biofilm that is more than 20 μm thick on an anode surface by utilizing the anode as a terminal respiratory electron acceptor. Just how microbes transport electrons through a thick biofilm and across the biofilm/anode interface, and what determines the upper limit to biofilm thickness and catalytic activity (i.e., current, the rate at which electrons are transferred to the anode), are fundamental questions attracting substantial attention. A significant body of experimental evidence suggests that electrons are transferred from individual cells through a network of cytochromes associated with cell outer membranes, within extracellular polymeric substances, and along pili. Here, we describe what is known about this extracellular electron transfer process, referred to as electron superexchange, and its proposed role in biofilm anode respiration. Superexchange is able to account for many different types of experimental results, as well as for the upper limit to biofilm thickness and catalytic activity that Geobacter biofilm anodes can achieve. Long‐range superexchange: We describe an evolving scheme of biofilm anode respiration ultimately controlled by superexchange among extracellular cytochromes. Although it is likely that other components are also involved, we are able to account for many different types of experimental evidence reported for actively respiring Geobacter biofilm anodes.
doi_str_mv 10.1002/cssc.201100748
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019617802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1019617802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4498-e63623d8e3965777b8ba3fed321853ca117a65ed0d79b8a3a9741361122cccb73</originalsourceid><addsrcrecordid>eNqFkM9LwzAYhoMobk6vHqVHL5350SbpUcs2heGUTRQvIU1TV22bmbTo_ns7Oos3T9_3wfO-8D0AnCM4RhDiK-WcGmOI2oMF_AAMEaeBH9Lg5bDfCRqAE-feIaQwovQYDDCmKISYDAFcVN6k0Kq2pvJWVlZuY2zt1Wtrmre1N9MmkarW1rvJTZYXpTsFR5ksnD7bzxF4mk5W8a0_X8zu4uu5r4Ig4r6mhGKSck0iGjLGEp5IkumUYMRDoiRCTNJQpzBlUcIlkRELEKEIYayUShgZgcuud2PNZ6NdLcrcKV0UstKmcQJBFFHEePvFCIw7VFnjnNWZ2Ni8lHbbQmJnSewsid5SG7jYdzdJqdMe_9XSAlEHfOWF3v5TJ-LlMv5b7nfZ3NX6u89K-yEoIywUz_cz8fjK6DR8IGJFfgAvmoFs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019617802</pqid></control><display><type>article</type><title>On Electron Transport through Geobacter Biofilms</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bond, Daniel R. ; Strycharz-Glaven, Sarah M. ; Tender, Leonard M. ; Torres, César I.</creator><creatorcontrib>Bond, Daniel R. ; Strycharz-Glaven, Sarah M. ; Tender, Leonard M. ; Torres, César I.</creatorcontrib><description>Geobacter spp. can form a biofilm that is more than 20 μm thick on an anode surface by utilizing the anode as a terminal respiratory electron acceptor. Just how microbes transport electrons through a thick biofilm and across the biofilm/anode interface, and what determines the upper limit to biofilm thickness and catalytic activity (i.e., current, the rate at which electrons are transferred to the anode), are fundamental questions attracting substantial attention. A significant body of experimental evidence suggests that electrons are transferred from individual cells through a network of cytochromes associated with cell outer membranes, within extracellular polymeric substances, and along pili. Here, we describe what is known about this extracellular electron transfer process, referred to as electron superexchange, and its proposed role in biofilm anode respiration. Superexchange is able to account for many different types of experimental results, as well as for the upper limit to biofilm thickness and catalytic activity that Geobacter biofilm anodes can achieve. Long‐range superexchange: We describe an evolving scheme of biofilm anode respiration ultimately controlled by superexchange among extracellular cytochromes. Although it is likely that other components are also involved, we are able to account for many different types of experimental evidence reported for actively respiring Geobacter biofilm anodes.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201100748</identifier><identifier>PMID: 22615023</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Bacterial Proteins - metabolism ; Bioelectric Energy Sources ; Biofilms ; Catalysis ; Cytochrome c Group - metabolism ; electrochemistry ; Electrodes - microbiology ; Electron Transport ; fuel cells ; Geobacter - physiology ; Hydrogen-Ion Concentration ; microbes ; Nanostructures ; nanowires ; Oxidation-Reduction</subject><ispartof>ChemSusChem, 2012-06, Vol.5 (6), p.1099-1105</ispartof><rights>Copyright © 2012 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2012 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4498-e63623d8e3965777b8ba3fed321853ca117a65ed0d79b8a3a9741361122cccb73</citedby><cites>FETCH-LOGICAL-c4498-e63623d8e3965777b8ba3fed321853ca117a65ed0d79b8a3a9741361122cccb73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.201100748$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.201100748$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27915,27916,45565,45566</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22615023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bond, Daniel R.</creatorcontrib><creatorcontrib>Strycharz-Glaven, Sarah M.</creatorcontrib><creatorcontrib>Tender, Leonard M.</creatorcontrib><creatorcontrib>Torres, César I.</creatorcontrib><title>On Electron Transport through Geobacter Biofilms</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>Geobacter spp. can form a biofilm that is more than 20 μm thick on an anode surface by utilizing the anode as a terminal respiratory electron acceptor. Just how microbes transport electrons through a thick biofilm and across the biofilm/anode interface, and what determines the upper limit to biofilm thickness and catalytic activity (i.e., current, the rate at which electrons are transferred to the anode), are fundamental questions attracting substantial attention. A significant body of experimental evidence suggests that electrons are transferred from individual cells through a network of cytochromes associated with cell outer membranes, within extracellular polymeric substances, and along pili. Here, we describe what is known about this extracellular electron transfer process, referred to as electron superexchange, and its proposed role in biofilm anode respiration. Superexchange is able to account for many different types of experimental results, as well as for the upper limit to biofilm thickness and catalytic activity that Geobacter biofilm anodes can achieve. Long‐range superexchange: We describe an evolving scheme of biofilm anode respiration ultimately controlled by superexchange among extracellular cytochromes. Although it is likely that other components are also involved, we are able to account for many different types of experimental evidence reported for actively respiring Geobacter biofilm anodes.</description><subject>Bacterial Proteins - metabolism</subject><subject>Bioelectric Energy Sources</subject><subject>Biofilms</subject><subject>Catalysis</subject><subject>Cytochrome c Group - metabolism</subject><subject>electrochemistry</subject><subject>Electrodes - microbiology</subject><subject>Electron Transport</subject><subject>fuel cells</subject><subject>Geobacter - physiology</subject><subject>Hydrogen-Ion Concentration</subject><subject>microbes</subject><subject>Nanostructures</subject><subject>nanowires</subject><subject>Oxidation-Reduction</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM9LwzAYhoMobk6vHqVHL5350SbpUcs2heGUTRQvIU1TV22bmbTo_ns7Oos3T9_3wfO-8D0AnCM4RhDiK-WcGmOI2oMF_AAMEaeBH9Lg5bDfCRqAE-feIaQwovQYDDCmKISYDAFcVN6k0Kq2pvJWVlZuY2zt1Wtrmre1N9MmkarW1rvJTZYXpTsFR5ksnD7bzxF4mk5W8a0_X8zu4uu5r4Ig4r6mhGKSck0iGjLGEp5IkumUYMRDoiRCTNJQpzBlUcIlkRELEKEIYayUShgZgcuud2PNZ6NdLcrcKV0UstKmcQJBFFHEePvFCIw7VFnjnNWZ2Ni8lHbbQmJnSewsid5SG7jYdzdJqdMe_9XSAlEHfOWF3v5TJ-LlMv5b7nfZ3NX6u89K-yEoIywUz_cz8fjK6DR8IGJFfgAvmoFs</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Bond, Daniel R.</creator><creator>Strycharz-Glaven, Sarah M.</creator><creator>Tender, Leonard M.</creator><creator>Torres, César I.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201206</creationdate><title>On Electron Transport through Geobacter Biofilms</title><author>Bond, Daniel R. ; Strycharz-Glaven, Sarah M. ; Tender, Leonard M. ; Torres, César I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4498-e63623d8e3965777b8ba3fed321853ca117a65ed0d79b8a3a9741361122cccb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bacterial Proteins - metabolism</topic><topic>Bioelectric Energy Sources</topic><topic>Biofilms</topic><topic>Catalysis</topic><topic>Cytochrome c Group - metabolism</topic><topic>electrochemistry</topic><topic>Electrodes - microbiology</topic><topic>Electron Transport</topic><topic>fuel cells</topic><topic>Geobacter - physiology</topic><topic>Hydrogen-Ion Concentration</topic><topic>microbes</topic><topic>Nanostructures</topic><topic>nanowires</topic><topic>Oxidation-Reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bond, Daniel R.</creatorcontrib><creatorcontrib>Strycharz-Glaven, Sarah M.</creatorcontrib><creatorcontrib>Tender, Leonard M.</creatorcontrib><creatorcontrib>Torres, César I.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bond, Daniel R.</au><au>Strycharz-Glaven, Sarah M.</au><au>Tender, Leonard M.</au><au>Torres, César I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Electron Transport through Geobacter Biofilms</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2012-06</date><risdate>2012</risdate><volume>5</volume><issue>6</issue><spage>1099</spage><epage>1105</epage><pages>1099-1105</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Geobacter spp. can form a biofilm that is more than 20 μm thick on an anode surface by utilizing the anode as a terminal respiratory electron acceptor. Just how microbes transport electrons through a thick biofilm and across the biofilm/anode interface, and what determines the upper limit to biofilm thickness and catalytic activity (i.e., current, the rate at which electrons are transferred to the anode), are fundamental questions attracting substantial attention. A significant body of experimental evidence suggests that electrons are transferred from individual cells through a network of cytochromes associated with cell outer membranes, within extracellular polymeric substances, and along pili. Here, we describe what is known about this extracellular electron transfer process, referred to as electron superexchange, and its proposed role in biofilm anode respiration. Superexchange is able to account for many different types of experimental results, as well as for the upper limit to biofilm thickness and catalytic activity that Geobacter biofilm anodes can achieve. Long‐range superexchange: We describe an evolving scheme of biofilm anode respiration ultimately controlled by superexchange among extracellular cytochromes. Although it is likely that other components are also involved, we are able to account for many different types of experimental evidence reported for actively respiring Geobacter biofilm anodes.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>22615023</pmid><doi>10.1002/cssc.201100748</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2012-06, Vol.5 (6), p.1099-1105
issn 1864-5631
1864-564X
language eng
recordid cdi_proquest_miscellaneous_1019617802
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Bacterial Proteins - metabolism
Bioelectric Energy Sources
Biofilms
Catalysis
Cytochrome c Group - metabolism
electrochemistry
Electrodes - microbiology
Electron Transport
fuel cells
Geobacter - physiology
Hydrogen-Ion Concentration
microbes
Nanostructures
nanowires
Oxidation-Reduction
title On Electron Transport through Geobacter Biofilms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A44%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Electron%20Transport%20through%20Geobacter%20Biofilms&rft.jtitle=ChemSusChem&rft.au=Bond,%20Daniel%20R.&rft.date=2012-06&rft.volume=5&rft.issue=6&rft.spage=1099&rft.epage=1105&rft.pages=1099-1105&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201100748&rft_dat=%3Cproquest_cross%3E1019617802%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019617802&rft_id=info:pmid/22615023&rfr_iscdi=true