An entropy-based nonparametric test for the validation of surrogate endpoints

We present a nonparametric test to validate surrogate endpoints based on measure of divergence and random permutation. This test is a proposal to directly verify the Prentice statistical definition of surrogacy. The test does not impose distributional assumptions on the endpoints, and it is robust t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2012-06, Vol.31 (14), p.1517-1530
Hauptverfasser: Miao, Xiaopeng, Wang, Yong-Cheng, Gangopadhyay, Ashis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1530
container_issue 14
container_start_page 1517
container_title Statistics in medicine
container_volume 31
creator Miao, Xiaopeng
Wang, Yong-Cheng
Gangopadhyay, Ashis
description We present a nonparametric test to validate surrogate endpoints based on measure of divergence and random permutation. This test is a proposal to directly verify the Prentice statistical definition of surrogacy. The test does not impose distributional assumptions on the endpoints, and it is robust to model misspecification. Our simulation study shows that the proposed nonparametric test outperforms the practical test of the Prentice criterion in terms of both robustness of size and power. We also evaluate the performance of three leading methods that attempt to quantify the effect of surrogate endpoints. The proposed method is applied to validate magnetic resonance imaging lesions as the surrogate endpoint for clinical relapses in a multiple sclerosis trial. Copyright © 2012 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/sim.4500
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1019615757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2685730761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4870-c841989daa38f7e763b73967e82445300ebcf3e679e4f6b0be4f51481429f0dd3</originalsourceid><addsrcrecordid>eNp10E9r1UAUh-FBFHutgp9AAm7cpJ75n1mWotfW3rpQEdwMk-REpyaZODNR77d3Sq8VBFdn8_By-BHylMIJBWAvk59OhAS4RzYUjK6ByeY-2QDTulaayiPyKKVrAEol0w_JEWNciIaZDdmdzhXOOYZlX7cuYV_NYV5cdBPm6LsqY8rVEGKVv2L1w42-d9mHuQpDldYYwxeXsQT6Jfg5p8fkweDGhE8O95h8fP3qw9mb-vLd9vzs9LLuRKOh7hpBTWN653gzaNSKt5obpbFhQkgOgG03cFTaoBhUC205koqGCmYG6Ht-TF7cdpcYvq_lRTv51OE4uhnDmiwFahSVWupCn_9Dr8Ma5_JdUQzAGKX432AXQ0oRB7tEP7m4L8jeTGzLxPZm4kKfHYJrO2F_B_9sWkB9C376Eff_Ddn357tD8OB9yvjrzrv4zSrNtbSfrrb28_aCXrw1O3vFfwN6FZMn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1020099663</pqid></control><display><type>article</type><title>An entropy-based nonparametric test for the validation of surrogate endpoints</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Miao, Xiaopeng ; Wang, Yong-Cheng ; Gangopadhyay, Ashis</creator><creatorcontrib>Miao, Xiaopeng ; Wang, Yong-Cheng ; Gangopadhyay, Ashis</creatorcontrib><description>We present a nonparametric test to validate surrogate endpoints based on measure of divergence and random permutation. This test is a proposal to directly verify the Prentice statistical definition of surrogacy. The test does not impose distributional assumptions on the endpoints, and it is robust to model misspecification. Our simulation study shows that the proposed nonparametric test outperforms the practical test of the Prentice criterion in terms of both robustness of size and power. We also evaluate the performance of three leading methods that attempt to quantify the effect of surrogate endpoints. The proposed method is applied to validate magnetic resonance imaging lesions as the surrogate endpoint for clinical relapses in a multiple sclerosis trial. Copyright © 2012 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.4500</identifier><identifier>PMID: 22344829</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Adjuvants, Immunologic - therapeutic use ; Biomarkers - analysis ; Biomarkers - metabolism ; Computer Simulation - statistics &amp; numerical data ; Endpoint Determination - statistics &amp; numerical data ; Entropy ; Humans ; Interferon beta-1a ; Interferon-beta - therapeutic use ; Kullback-Leibler divergence ; Magnetic Resonance Imaging ; Medical statistics ; Models, Statistical ; Multiple sclerosis ; Multiple Sclerosis - diagnosis ; Multiple Sclerosis - drug therapy ; Multiple Sclerosis - physiopathology ; NMR ; nonparametric test ; Nuclear magnetic resonance ; Poisson Distribution ; Prentice criteria ; Randomized Controlled Trials as Topic - statistics &amp; numerical data ; Secondary Prevention ; Simulation ; Statistics, Nonparametric ; surrogate endpoints ; Treatment Outcome ; Validation studies</subject><ispartof>Statistics in medicine, 2012-06, Vol.31 (14), p.1517-1530</ispartof><rights>Copyright © 2012 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright John Wiley and Sons, Limited Jun 30, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4870-c841989daa38f7e763b73967e82445300ebcf3e679e4f6b0be4f51481429f0dd3</citedby><cites>FETCH-LOGICAL-c4870-c841989daa38f7e763b73967e82445300ebcf3e679e4f6b0be4f51481429f0dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.4500$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.4500$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22344829$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miao, Xiaopeng</creatorcontrib><creatorcontrib>Wang, Yong-Cheng</creatorcontrib><creatorcontrib>Gangopadhyay, Ashis</creatorcontrib><title>An entropy-based nonparametric test for the validation of surrogate endpoints</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>We present a nonparametric test to validate surrogate endpoints based on measure of divergence and random permutation. This test is a proposal to directly verify the Prentice statistical definition of surrogacy. The test does not impose distributional assumptions on the endpoints, and it is robust to model misspecification. Our simulation study shows that the proposed nonparametric test outperforms the practical test of the Prentice criterion in terms of both robustness of size and power. We also evaluate the performance of three leading methods that attempt to quantify the effect of surrogate endpoints. The proposed method is applied to validate magnetic resonance imaging lesions as the surrogate endpoint for clinical relapses in a multiple sclerosis trial. Copyright © 2012 John Wiley &amp; Sons, Ltd.</description><subject>Adjuvants, Immunologic - therapeutic use</subject><subject>Biomarkers - analysis</subject><subject>Biomarkers - metabolism</subject><subject>Computer Simulation - statistics &amp; numerical data</subject><subject>Endpoint Determination - statistics &amp; numerical data</subject><subject>Entropy</subject><subject>Humans</subject><subject>Interferon beta-1a</subject><subject>Interferon-beta - therapeutic use</subject><subject>Kullback-Leibler divergence</subject><subject>Magnetic Resonance Imaging</subject><subject>Medical statistics</subject><subject>Models, Statistical</subject><subject>Multiple sclerosis</subject><subject>Multiple Sclerosis - diagnosis</subject><subject>Multiple Sclerosis - drug therapy</subject><subject>Multiple Sclerosis - physiopathology</subject><subject>NMR</subject><subject>nonparametric test</subject><subject>Nuclear magnetic resonance</subject><subject>Poisson Distribution</subject><subject>Prentice criteria</subject><subject>Randomized Controlled Trials as Topic - statistics &amp; numerical data</subject><subject>Secondary Prevention</subject><subject>Simulation</subject><subject>Statistics, Nonparametric</subject><subject>surrogate endpoints</subject><subject>Treatment Outcome</subject><subject>Validation studies</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10E9r1UAUh-FBFHutgp9AAm7cpJ75n1mWotfW3rpQEdwMk-REpyaZODNR77d3Sq8VBFdn8_By-BHylMIJBWAvk59OhAS4RzYUjK6ByeY-2QDTulaayiPyKKVrAEol0w_JEWNciIaZDdmdzhXOOYZlX7cuYV_NYV5cdBPm6LsqY8rVEGKVv2L1w42-d9mHuQpDldYYwxeXsQT6Jfg5p8fkweDGhE8O95h8fP3qw9mb-vLd9vzs9LLuRKOh7hpBTWN653gzaNSKt5obpbFhQkgOgG03cFTaoBhUC205koqGCmYG6Ht-TF7cdpcYvq_lRTv51OE4uhnDmiwFahSVWupCn_9Dr8Ma5_JdUQzAGKX432AXQ0oRB7tEP7m4L8jeTGzLxPZm4kKfHYJrO2F_B_9sWkB9C376Eff_Ddn357tD8OB9yvjrzrv4zSrNtbSfrrb28_aCXrw1O3vFfwN6FZMn</recordid><startdate>20120630</startdate><enddate>20120630</enddate><creator>Miao, Xiaopeng</creator><creator>Wang, Yong-Cheng</creator><creator>Gangopadhyay, Ashis</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20120630</creationdate><title>An entropy-based nonparametric test for the validation of surrogate endpoints</title><author>Miao, Xiaopeng ; Wang, Yong-Cheng ; Gangopadhyay, Ashis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4870-c841989daa38f7e763b73967e82445300ebcf3e679e4f6b0be4f51481429f0dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adjuvants, Immunologic - therapeutic use</topic><topic>Biomarkers - analysis</topic><topic>Biomarkers - metabolism</topic><topic>Computer Simulation - statistics &amp; numerical data</topic><topic>Endpoint Determination - statistics &amp; numerical data</topic><topic>Entropy</topic><topic>Humans</topic><topic>Interferon beta-1a</topic><topic>Interferon-beta - therapeutic use</topic><topic>Kullback-Leibler divergence</topic><topic>Magnetic Resonance Imaging</topic><topic>Medical statistics</topic><topic>Models, Statistical</topic><topic>Multiple sclerosis</topic><topic>Multiple Sclerosis - diagnosis</topic><topic>Multiple Sclerosis - drug therapy</topic><topic>Multiple Sclerosis - physiopathology</topic><topic>NMR</topic><topic>nonparametric test</topic><topic>Nuclear magnetic resonance</topic><topic>Poisson Distribution</topic><topic>Prentice criteria</topic><topic>Randomized Controlled Trials as Topic - statistics &amp; numerical data</topic><topic>Secondary Prevention</topic><topic>Simulation</topic><topic>Statistics, Nonparametric</topic><topic>surrogate endpoints</topic><topic>Treatment Outcome</topic><topic>Validation studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Xiaopeng</creatorcontrib><creatorcontrib>Wang, Yong-Cheng</creatorcontrib><creatorcontrib>Gangopadhyay, Ashis</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Xiaopeng</au><au>Wang, Yong-Cheng</au><au>Gangopadhyay, Ashis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An entropy-based nonparametric test for the validation of surrogate endpoints</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2012-06-30</date><risdate>2012</risdate><volume>31</volume><issue>14</issue><spage>1517</spage><epage>1530</epage><pages>1517-1530</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>We present a nonparametric test to validate surrogate endpoints based on measure of divergence and random permutation. This test is a proposal to directly verify the Prentice statistical definition of surrogacy. The test does not impose distributional assumptions on the endpoints, and it is robust to model misspecification. Our simulation study shows that the proposed nonparametric test outperforms the practical test of the Prentice criterion in terms of both robustness of size and power. We also evaluate the performance of three leading methods that attempt to quantify the effect of surrogate endpoints. The proposed method is applied to validate magnetic resonance imaging lesions as the surrogate endpoint for clinical relapses in a multiple sclerosis trial. Copyright © 2012 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>22344829</pmid><doi>10.1002/sim.4500</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2012-06, Vol.31 (14), p.1517-1530
issn 0277-6715
1097-0258
language eng
recordid cdi_proquest_miscellaneous_1019615757
source MEDLINE; Access via Wiley Online Library
subjects Adjuvants, Immunologic - therapeutic use
Biomarkers - analysis
Biomarkers - metabolism
Computer Simulation - statistics & numerical data
Endpoint Determination - statistics & numerical data
Entropy
Humans
Interferon beta-1a
Interferon-beta - therapeutic use
Kullback-Leibler divergence
Magnetic Resonance Imaging
Medical statistics
Models, Statistical
Multiple sclerosis
Multiple Sclerosis - diagnosis
Multiple Sclerosis - drug therapy
Multiple Sclerosis - physiopathology
NMR
nonparametric test
Nuclear magnetic resonance
Poisson Distribution
Prentice criteria
Randomized Controlled Trials as Topic - statistics & numerical data
Secondary Prevention
Simulation
Statistics, Nonparametric
surrogate endpoints
Treatment Outcome
Validation studies
title An entropy-based nonparametric test for the validation of surrogate endpoints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A44%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20entropy-based%20nonparametric%20test%20for%20the%20validation%20of%20surrogate%20endpoints&rft.jtitle=Statistics%20in%20medicine&rft.au=Miao,%20Xiaopeng&rft.date=2012-06-30&rft.volume=31&rft.issue=14&rft.spage=1517&rft.epage=1530&rft.pages=1517-1530&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.4500&rft_dat=%3Cproquest_cross%3E2685730761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1020099663&rft_id=info:pmid/22344829&rfr_iscdi=true