Top- N news recommendations in digital newspapers
News recommendation is a very active research field. The number of online journals has increased in recent years owing to the increasing popularity of the Internet. In this context, it is important to offer user tools that facilitate faster and more accurate access to articles of interest in digital...
Gespeichert in:
Veröffentlicht in: | Knowledge-based systems 2012-03, Vol.27, p.180-189 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 189 |
---|---|
container_issue | |
container_start_page | 180 |
container_title | Knowledge-based systems |
container_volume | 27 |
creator | Cleger-Tamayo, Sergio Fernández-Luna, Juan M. Huete, Juan F. |
description | News recommendation is a very active research field. The number of online journals has increased in recent years owing to the increasing popularity of the Internet. In this context, it is important to offer user tools that facilitate faster and more accurate access to articles of interest in digital newspapers. We present two probabilistic models based on latent variables that recommend relevant news to users according to profiles of their visits to the newspaper website. As input, the models consider news content and categories, according to a predefined classification, of those news previously accessed. The experimental results show good performance with respect to baseline models in a data set of news extracted from a digital journal edition. |
doi_str_mv | 10.1016/j.knosys.2011.11.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1018334560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S095070511100253X</els_id><sourcerecordid>1018334560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-7615b2ccc78045f202b3dad5dcf99d28cf8f7f9a5bfcf542d14d716f619539373</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD7-gYsu3bTmJk3TbAQZfMGgm3EdMnlIxrapSUeZf2_GuhYO3MX9zoFzELoCXAGG5mZbfQwh7VNFMECVhYEfoQW0nJS8xuIYLbBguOSYwSk6S2mLMSYE2gWCdRjL4qUY7HcqotWh7-1g1OTDkAo_FMa_-0l1v_9RjTamC3TiVJfs5d89R28P9-vlU7l6fXxe3q1KTamYSt4A2xCtNW9xzRzBZEONMsxoJ4QhrXat404otnHasZoYqA2HxjUgGBWU03N0PeeOMXzubJpk75O2XacGG3ZJ5uYtpTVrcEbrGdUxpBStk2P0vYr7DB24Rm7lvJA8LCSz8kLZdjvbbK7x5W2USXs7aGt8XmKSJvj_A34AVXhwqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1018334560</pqid></control><display><type>article</type><title>Top- N news recommendations in digital newspapers</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Cleger-Tamayo, Sergio ; Fernández-Luna, Juan M. ; Huete, Juan F.</creator><creatorcontrib>Cleger-Tamayo, Sergio ; Fernández-Luna, Juan M. ; Huete, Juan F.</creatorcontrib><description>News recommendation is a very active research field. The number of online journals has increased in recent years owing to the increasing popularity of the Internet. In this context, it is important to offer user tools that facilitate faster and more accurate access to articles of interest in digital newspapers. We present two probabilistic models based on latent variables that recommend relevant news to users according to profiles of their visits to the newspaper website. As input, the models consider news content and categories, according to a predefined classification, of those news previously accessed. The experimental results show good performance with respect to baseline models in a data set of news extracted from a digital journal edition.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2011.11.017</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Aspect model ; Content-based recommendation ; Electronic newspapers ; Information content ; Model-based recommending approach ; News recommender systems ; Recommendation systems ; User profiles</subject><ispartof>Knowledge-based systems, 2012-03, Vol.27, p.180-189</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-7615b2ccc78045f202b3dad5dcf99d28cf8f7f9a5bfcf542d14d716f619539373</citedby><cites>FETCH-LOGICAL-c339t-7615b2ccc78045f202b3dad5dcf99d28cf8f7f9a5bfcf542d14d716f619539373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.knosys.2011.11.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Cleger-Tamayo, Sergio</creatorcontrib><creatorcontrib>Fernández-Luna, Juan M.</creatorcontrib><creatorcontrib>Huete, Juan F.</creatorcontrib><title>Top- N news recommendations in digital newspapers</title><title>Knowledge-based systems</title><description>News recommendation is a very active research field. The number of online journals has increased in recent years owing to the increasing popularity of the Internet. In this context, it is important to offer user tools that facilitate faster and more accurate access to articles of interest in digital newspapers. We present two probabilistic models based on latent variables that recommend relevant news to users according to profiles of their visits to the newspaper website. As input, the models consider news content and categories, according to a predefined classification, of those news previously accessed. The experimental results show good performance with respect to baseline models in a data set of news extracted from a digital journal edition.</description><subject>Aspect model</subject><subject>Content-based recommendation</subject><subject>Electronic newspapers</subject><subject>Information content</subject><subject>Model-based recommending approach</subject><subject>News recommender systems</subject><subject>Recommendation systems</subject><subject>User profiles</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD7-gYsu3bTmJk3TbAQZfMGgm3EdMnlIxrapSUeZf2_GuhYO3MX9zoFzELoCXAGG5mZbfQwh7VNFMECVhYEfoQW0nJS8xuIYLbBguOSYwSk6S2mLMSYE2gWCdRjL4qUY7HcqotWh7-1g1OTDkAo_FMa_-0l1v_9RjTamC3TiVJfs5d89R28P9-vlU7l6fXxe3q1KTamYSt4A2xCtNW9xzRzBZEONMsxoJ4QhrXat404otnHasZoYqA2HxjUgGBWU03N0PeeOMXzubJpk75O2XacGG3ZJ5uYtpTVrcEbrGdUxpBStk2P0vYr7DB24Rm7lvJA8LCSz8kLZdjvbbK7x5W2USXs7aGt8XmKSJvj_A34AVXhwqA</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Cleger-Tamayo, Sergio</creator><creator>Fernández-Luna, Juan M.</creator><creator>Huete, Juan F.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope></search><sort><creationdate>20120301</creationdate><title>Top- N news recommendations in digital newspapers</title><author>Cleger-Tamayo, Sergio ; Fernández-Luna, Juan M. ; Huete, Juan F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-7615b2ccc78045f202b3dad5dcf99d28cf8f7f9a5bfcf542d14d716f619539373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aspect model</topic><topic>Content-based recommendation</topic><topic>Electronic newspapers</topic><topic>Information content</topic><topic>Model-based recommending approach</topic><topic>News recommender systems</topic><topic>Recommendation systems</topic><topic>User profiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cleger-Tamayo, Sergio</creatorcontrib><creatorcontrib>Fernández-Luna, Juan M.</creatorcontrib><creatorcontrib>Huete, Juan F.</creatorcontrib><collection>CrossRef</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cleger-Tamayo, Sergio</au><au>Fernández-Luna, Juan M.</au><au>Huete, Juan F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Top- N news recommendations in digital newspapers</atitle><jtitle>Knowledge-based systems</jtitle><date>2012-03-01</date><risdate>2012</risdate><volume>27</volume><spage>180</spage><epage>189</epage><pages>180-189</pages><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>News recommendation is a very active research field. The number of online journals has increased in recent years owing to the increasing popularity of the Internet. In this context, it is important to offer user tools that facilitate faster and more accurate access to articles of interest in digital newspapers. We present two probabilistic models based on latent variables that recommend relevant news to users according to profiles of their visits to the newspaper website. As input, the models consider news content and categories, according to a predefined classification, of those news previously accessed. The experimental results show good performance with respect to baseline models in a data set of news extracted from a digital journal edition.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2011.11.017</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-7051 |
ispartof | Knowledge-based systems, 2012-03, Vol.27, p.180-189 |
issn | 0950-7051 1872-7409 |
language | eng |
recordid | cdi_proquest_miscellaneous_1018334560 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Aspect model Content-based recommendation Electronic newspapers Information content Model-based recommending approach News recommender systems Recommendation systems User profiles |
title | Top- N news recommendations in digital newspapers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A23%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Top-%20N%20news%20recommendations%20in%20digital%20newspapers&rft.jtitle=Knowledge-based%20systems&rft.au=Cleger-Tamayo,%20Sergio&rft.date=2012-03-01&rft.volume=27&rft.spage=180&rft.epage=189&rft.pages=180-189&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2011.11.017&rft_dat=%3Cproquest_cross%3E1018334560%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1018334560&rft_id=info:pmid/&rft_els_id=S095070511100253X&rfr_iscdi=true |