Top- N news recommendations in digital newspapers

News recommendation is a very active research field. The number of online journals has increased in recent years owing to the increasing popularity of the Internet. In this context, it is important to offer user tools that facilitate faster and more accurate access to articles of interest in digital...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2012-03, Vol.27, p.180-189
Hauptverfasser: Cleger-Tamayo, Sergio, Fernández-Luna, Juan M., Huete, Juan F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 189
container_issue
container_start_page 180
container_title Knowledge-based systems
container_volume 27
creator Cleger-Tamayo, Sergio
Fernández-Luna, Juan M.
Huete, Juan F.
description News recommendation is a very active research field. The number of online journals has increased in recent years owing to the increasing popularity of the Internet. In this context, it is important to offer user tools that facilitate faster and more accurate access to articles of interest in digital newspapers. We present two probabilistic models based on latent variables that recommend relevant news to users according to profiles of their visits to the newspaper website. As input, the models consider news content and categories, according to a predefined classification, of those news previously accessed. The experimental results show good performance with respect to baseline models in a data set of news extracted from a digital journal edition.
doi_str_mv 10.1016/j.knosys.2011.11.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1018334560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S095070511100253X</els_id><sourcerecordid>1018334560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-7615b2ccc78045f202b3dad5dcf99d28cf8f7f9a5bfcf542d14d716f619539373</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD7-gYsu3bTmJk3TbAQZfMGgm3EdMnlIxrapSUeZf2_GuhYO3MX9zoFzELoCXAGG5mZbfQwh7VNFMECVhYEfoQW0nJS8xuIYLbBguOSYwSk6S2mLMSYE2gWCdRjL4qUY7HcqotWh7-1g1OTDkAo_FMa_-0l1v_9RjTamC3TiVJfs5d89R28P9-vlU7l6fXxe3q1KTamYSt4A2xCtNW9xzRzBZEONMsxoJ4QhrXat404otnHasZoYqA2HxjUgGBWU03N0PeeOMXzubJpk75O2XacGG3ZJ5uYtpTVrcEbrGdUxpBStk2P0vYr7DB24Rm7lvJA8LCSz8kLZdjvbbK7x5W2USXs7aGt8XmKSJvj_A34AVXhwqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1018334560</pqid></control><display><type>article</type><title>Top- N news recommendations in digital newspapers</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Cleger-Tamayo, Sergio ; Fernández-Luna, Juan M. ; Huete, Juan F.</creator><creatorcontrib>Cleger-Tamayo, Sergio ; Fernández-Luna, Juan M. ; Huete, Juan F.</creatorcontrib><description>News recommendation is a very active research field. The number of online journals has increased in recent years owing to the increasing popularity of the Internet. In this context, it is important to offer user tools that facilitate faster and more accurate access to articles of interest in digital newspapers. We present two probabilistic models based on latent variables that recommend relevant news to users according to profiles of their visits to the newspaper website. As input, the models consider news content and categories, according to a predefined classification, of those news previously accessed. The experimental results show good performance with respect to baseline models in a data set of news extracted from a digital journal edition.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2011.11.017</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Aspect model ; Content-based recommendation ; Electronic newspapers ; Information content ; Model-based recommending approach ; News recommender systems ; Recommendation systems ; User profiles</subject><ispartof>Knowledge-based systems, 2012-03, Vol.27, p.180-189</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-7615b2ccc78045f202b3dad5dcf99d28cf8f7f9a5bfcf542d14d716f619539373</citedby><cites>FETCH-LOGICAL-c339t-7615b2ccc78045f202b3dad5dcf99d28cf8f7f9a5bfcf542d14d716f619539373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.knosys.2011.11.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Cleger-Tamayo, Sergio</creatorcontrib><creatorcontrib>Fernández-Luna, Juan M.</creatorcontrib><creatorcontrib>Huete, Juan F.</creatorcontrib><title>Top- N news recommendations in digital newspapers</title><title>Knowledge-based systems</title><description>News recommendation is a very active research field. The number of online journals has increased in recent years owing to the increasing popularity of the Internet. In this context, it is important to offer user tools that facilitate faster and more accurate access to articles of interest in digital newspapers. We present two probabilistic models based on latent variables that recommend relevant news to users according to profiles of their visits to the newspaper website. As input, the models consider news content and categories, according to a predefined classification, of those news previously accessed. The experimental results show good performance with respect to baseline models in a data set of news extracted from a digital journal edition.</description><subject>Aspect model</subject><subject>Content-based recommendation</subject><subject>Electronic newspapers</subject><subject>Information content</subject><subject>Model-based recommending approach</subject><subject>News recommender systems</subject><subject>Recommendation systems</subject><subject>User profiles</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD7-gYsu3bTmJk3TbAQZfMGgm3EdMnlIxrapSUeZf2_GuhYO3MX9zoFzELoCXAGG5mZbfQwh7VNFMECVhYEfoQW0nJS8xuIYLbBguOSYwSk6S2mLMSYE2gWCdRjL4qUY7HcqotWh7-1g1OTDkAo_FMa_-0l1v_9RjTamC3TiVJfs5d89R28P9-vlU7l6fXxe3q1KTamYSt4A2xCtNW9xzRzBZEONMsxoJ4QhrXat404otnHasZoYqA2HxjUgGBWU03N0PeeOMXzubJpk75O2XacGG3ZJ5uYtpTVrcEbrGdUxpBStk2P0vYr7DB24Rm7lvJA8LCSz8kLZdjvbbK7x5W2USXs7aGt8XmKSJvj_A34AVXhwqA</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Cleger-Tamayo, Sergio</creator><creator>Fernández-Luna, Juan M.</creator><creator>Huete, Juan F.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope></search><sort><creationdate>20120301</creationdate><title>Top- N news recommendations in digital newspapers</title><author>Cleger-Tamayo, Sergio ; Fernández-Luna, Juan M. ; Huete, Juan F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-7615b2ccc78045f202b3dad5dcf99d28cf8f7f9a5bfcf542d14d716f619539373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aspect model</topic><topic>Content-based recommendation</topic><topic>Electronic newspapers</topic><topic>Information content</topic><topic>Model-based recommending approach</topic><topic>News recommender systems</topic><topic>Recommendation systems</topic><topic>User profiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cleger-Tamayo, Sergio</creatorcontrib><creatorcontrib>Fernández-Luna, Juan M.</creatorcontrib><creatorcontrib>Huete, Juan F.</creatorcontrib><collection>CrossRef</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cleger-Tamayo, Sergio</au><au>Fernández-Luna, Juan M.</au><au>Huete, Juan F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Top- N news recommendations in digital newspapers</atitle><jtitle>Knowledge-based systems</jtitle><date>2012-03-01</date><risdate>2012</risdate><volume>27</volume><spage>180</spage><epage>189</epage><pages>180-189</pages><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>News recommendation is a very active research field. The number of online journals has increased in recent years owing to the increasing popularity of the Internet. In this context, it is important to offer user tools that facilitate faster and more accurate access to articles of interest in digital newspapers. We present two probabilistic models based on latent variables that recommend relevant news to users according to profiles of their visits to the newspaper website. As input, the models consider news content and categories, according to a predefined classification, of those news previously accessed. The experimental results show good performance with respect to baseline models in a data set of news extracted from a digital journal edition.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2011.11.017</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2012-03, Vol.27, p.180-189
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_miscellaneous_1018334560
source ScienceDirect Journals (5 years ago - present)
subjects Aspect model
Content-based recommendation
Electronic newspapers
Information content
Model-based recommending approach
News recommender systems
Recommendation systems
User profiles
title Top- N news recommendations in digital newspapers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A23%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Top-%20N%20news%20recommendations%20in%20digital%20newspapers&rft.jtitle=Knowledge-based%20systems&rft.au=Cleger-Tamayo,%20Sergio&rft.date=2012-03-01&rft.volume=27&rft.spage=180&rft.epage=189&rft.pages=180-189&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2011.11.017&rft_dat=%3Cproquest_cross%3E1018334560%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1018334560&rft_id=info:pmid/&rft_els_id=S095070511100253X&rfr_iscdi=true