Enhanced uridine 5′-monophosphate production by whole cell of Saccharomyces cerevisiae through rational redistribution of metabolic flux

A whole-cell biocatalytic process for uridine 5′-monophosphate (UMP) production from orotic acid by Saccharomyces cerevisiae was developed. To rationally redistribute the metabolic flux between glycolysis and pentose phosphate pathway, statistical methods were employed first to find out the critical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioprocess and biosystems engineering 2012-06, Vol.35 (5), p.729-737
Hauptverfasser: Liu, Dong, Chen, Yong, Li, An, Xie, Jingjing, Xiong, Jian, Bai, Jianxin, Chen, Xiaochun, Niu, Huanqing, Zhou, Tao, Ying, Hanjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 737
container_issue 5
container_start_page 729
container_title Bioprocess and biosystems engineering
container_volume 35
creator Liu, Dong
Chen, Yong
Li, An
Xie, Jingjing
Xiong, Jian
Bai, Jianxin
Chen, Xiaochun
Niu, Huanqing
Zhou, Tao
Ying, Hanjie
description A whole-cell biocatalytic process for uridine 5′-monophosphate (UMP) production from orotic acid by Saccharomyces cerevisiae was developed. To rationally redistribute the metabolic flux between glycolysis and pentose phosphate pathway, statistical methods were employed first to find out the critical factors in the process. NaH 2 PO 4 , MgCl 2 and pH were found to be the important factors affecting UMP production significantly. The levels of these three factors required for the maximum production of UMP were determined: NaH 2 PO 4 22.1 g/L; MgCl 2 2.55 g/L; pH 8.15. An enhancement of UMP production from 6.12 to 8.13 g/L was achieved. A significant redistribution of metabolic fluxes was observed and the underlying mechanism was discussed.
doi_str_mv 10.1007/s00449-011-0653-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1017983722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660307491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-146877ca23dcc0f4b6c1f8e156298678b67f4710f33ee470b881543f9603ba3</originalsourceid><addsrcrecordid>eNqNkc2KFDEUhQtRnB99ADcSEGE2pffmp5JayjD-wICLcV-kUslUhqpKm1TU3rn2cXwkn8T0dI-KILjKJfc7JzmcqnqC8AIB5MsEwHlbA2INjWC1uFcdY4Oilg2I-3ezaPGoOknpBgCFovCwOqIUFIKA4-rbxTLqxdiB5OgHv1gifnz9Xs9hCZsxpM2oV0s2MQzZrD4spN-Sz2OYLDF2mkhw5EobM-oY5q2xqdxG-8knry1Zxxjy9Uii3gn1RKIdfFqj7_OtU9HOdtV9mLwhbspfHlUPnJ6SfXw4T6ur1xcfzt_Wl-_fvDt_dVkbzsRaI2-UlEZTNhgDjveNQacsioa2qpGqb6TjEsExZi2X0CuFgjPXNsB6zU6rs71rCfUx27R2s0-7MHqxIacOAWWrmKT0f1BExRDbgj77C70JOZbUtxTjnDKGhcI9ZWJIKVrXbaKfddwWqNs12u0b7Ypxt2u0E0Xz9OCc-9kOvxR3FRbg-QHQyejJxVKnT785oSQDygtH91wqq-Xaxj-_-K_XfwKPEro0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1013442331</pqid></control><display><type>article</type><title>Enhanced uridine 5′-monophosphate production by whole cell of Saccharomyces cerevisiae through rational redistribution of metabolic flux</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Liu, Dong ; Chen, Yong ; Li, An ; Xie, Jingjing ; Xiong, Jian ; Bai, Jianxin ; Chen, Xiaochun ; Niu, Huanqing ; Zhou, Tao ; Ying, Hanjie</creator><creatorcontrib>Liu, Dong ; Chen, Yong ; Li, An ; Xie, Jingjing ; Xiong, Jian ; Bai, Jianxin ; Chen, Xiaochun ; Niu, Huanqing ; Zhou, Tao ; Ying, Hanjie</creatorcontrib><description>A whole-cell biocatalytic process for uridine 5′-monophosphate (UMP) production from orotic acid by Saccharomyces cerevisiae was developed. To rationally redistribute the metabolic flux between glycolysis and pentose phosphate pathway, statistical methods were employed first to find out the critical factors in the process. NaH 2 PO 4 , MgCl 2 and pH were found to be the important factors affecting UMP production significantly. The levels of these three factors required for the maximum production of UMP were determined: NaH 2 PO 4 22.1 g/L; MgCl 2 2.55 g/L; pH 8.15. An enhancement of UMP production from 6.12 to 8.13 g/L was achieved. A significant redistribution of metabolic fluxes was observed and the underlying mechanism was discussed.</description><identifier>ISSN: 1615-7591</identifier><identifier>EISSN: 1615-7605</identifier><identifier>DOI: 10.1007/s00449-011-0653-5</identifier><identifier>PMID: 22081050</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Biochemistry ; Bioconversions. Hemisynthesis ; Biological and medical sciences ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Environmental Engineering/Biotechnology ; Enzymes ; Food Science ; Fundamental and applied biological sciences. Psychology ; Hydrogen-Ion Concentration ; Industrial and Production Engineering ; Industrial Chemistry/Chemical Engineering ; Magnesium Chloride - chemistry ; Magnesium Chloride - metabolism ; Metabolism ; Methods. Procedures. Technologies ; Original Paper ; Orotic Acid - metabolism ; Phosphates - chemistry ; Phosphates - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae - metabolism ; Statistical methods ; Uridine Monophosphate - biosynthesis ; Yeast</subject><ispartof>Bioprocess and biosystems engineering, 2012-06, Vol.35 (5), p.729-737</ispartof><rights>Springer-Verlag 2011</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-146877ca23dcc0f4b6c1f8e156298678b67f4710f33ee470b881543f9603ba3</citedby><cites>FETCH-LOGICAL-c435t-146877ca23dcc0f4b6c1f8e156298678b67f4710f33ee470b881543f9603ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00449-011-0653-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00449-011-0653-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25873024$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22081050$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Dong</creatorcontrib><creatorcontrib>Chen, Yong</creatorcontrib><creatorcontrib>Li, An</creatorcontrib><creatorcontrib>Xie, Jingjing</creatorcontrib><creatorcontrib>Xiong, Jian</creatorcontrib><creatorcontrib>Bai, Jianxin</creatorcontrib><creatorcontrib>Chen, Xiaochun</creatorcontrib><creatorcontrib>Niu, Huanqing</creatorcontrib><creatorcontrib>Zhou, Tao</creatorcontrib><creatorcontrib>Ying, Hanjie</creatorcontrib><title>Enhanced uridine 5′-monophosphate production by whole cell of Saccharomyces cerevisiae through rational redistribution of metabolic flux</title><title>Bioprocess and biosystems engineering</title><addtitle>Bioprocess Biosyst Eng</addtitle><addtitle>Bioprocess Biosyst Eng</addtitle><description>A whole-cell biocatalytic process for uridine 5′-monophosphate (UMP) production from orotic acid by Saccharomyces cerevisiae was developed. To rationally redistribute the metabolic flux between glycolysis and pentose phosphate pathway, statistical methods were employed first to find out the critical factors in the process. NaH 2 PO 4 , MgCl 2 and pH were found to be the important factors affecting UMP production significantly. The levels of these three factors required for the maximum production of UMP were determined: NaH 2 PO 4 22.1 g/L; MgCl 2 2.55 g/L; pH 8.15. An enhancement of UMP production from 6.12 to 8.13 g/L was achieved. A significant redistribution of metabolic fluxes was observed and the underlying mechanism was discussed.</description><subject>Biochemistry</subject><subject>Bioconversions. Hemisynthesis</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Enzymes</subject><subject>Food Science</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrogen-Ion Concentration</subject><subject>Industrial and Production Engineering</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Magnesium Chloride - chemistry</subject><subject>Magnesium Chloride - metabolism</subject><subject>Metabolism</subject><subject>Methods. Procedures. Technologies</subject><subject>Original Paper</subject><subject>Orotic Acid - metabolism</subject><subject>Phosphates - chemistry</subject><subject>Phosphates - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Statistical methods</subject><subject>Uridine Monophosphate - biosynthesis</subject><subject>Yeast</subject><issn>1615-7591</issn><issn>1615-7605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkc2KFDEUhQtRnB99ADcSEGE2pffmp5JayjD-wICLcV-kUslUhqpKm1TU3rn2cXwkn8T0dI-KILjKJfc7JzmcqnqC8AIB5MsEwHlbA2INjWC1uFcdY4Oilg2I-3ezaPGoOknpBgCFovCwOqIUFIKA4-rbxTLqxdiB5OgHv1gifnz9Xs9hCZsxpM2oV0s2MQzZrD4spN-Sz2OYLDF2mkhw5EobM-oY5q2xqdxG-8knry1Zxxjy9Uii3gn1RKIdfFqj7_OtU9HOdtV9mLwhbspfHlUPnJ6SfXw4T6ur1xcfzt_Wl-_fvDt_dVkbzsRaI2-UlEZTNhgDjveNQacsioa2qpGqb6TjEsExZi2X0CuFgjPXNsB6zU6rs71rCfUx27R2s0-7MHqxIacOAWWrmKT0f1BExRDbgj77C70JOZbUtxTjnDKGhcI9ZWJIKVrXbaKfddwWqNs12u0b7Ypxt2u0E0Xz9OCc-9kOvxR3FRbg-QHQyejJxVKnT785oSQDygtH91wqq-Xaxj-_-K_XfwKPEro0</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Liu, Dong</creator><creator>Chen, Yong</creator><creator>Li, An</creator><creator>Xie, Jingjing</creator><creator>Xiong, Jian</creator><creator>Bai, Jianxin</creator><creator>Chen, Xiaochun</creator><creator>Niu, Huanqing</creator><creator>Zhou, Tao</creator><creator>Ying, Hanjie</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20120601</creationdate><title>Enhanced uridine 5′-monophosphate production by whole cell of Saccharomyces cerevisiae through rational redistribution of metabolic flux</title><author>Liu, Dong ; Chen, Yong ; Li, An ; Xie, Jingjing ; Xiong, Jian ; Bai, Jianxin ; Chen, Xiaochun ; Niu, Huanqing ; Zhou, Tao ; Ying, Hanjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-146877ca23dcc0f4b6c1f8e156298678b67f4710f33ee470b881543f9603ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biochemistry</topic><topic>Bioconversions. Hemisynthesis</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Enzymes</topic><topic>Food Science</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrogen-Ion Concentration</topic><topic>Industrial and Production Engineering</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Magnesium Chloride - chemistry</topic><topic>Magnesium Chloride - metabolism</topic><topic>Metabolism</topic><topic>Methods. Procedures. Technologies</topic><topic>Original Paper</topic><topic>Orotic Acid - metabolism</topic><topic>Phosphates - chemistry</topic><topic>Phosphates - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Statistical methods</topic><topic>Uridine Monophosphate - biosynthesis</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Dong</creatorcontrib><creatorcontrib>Chen, Yong</creatorcontrib><creatorcontrib>Li, An</creatorcontrib><creatorcontrib>Xie, Jingjing</creatorcontrib><creatorcontrib>Xiong, Jian</creatorcontrib><creatorcontrib>Bai, Jianxin</creatorcontrib><creatorcontrib>Chen, Xiaochun</creatorcontrib><creatorcontrib>Niu, Huanqing</creatorcontrib><creatorcontrib>Zhou, Tao</creatorcontrib><creatorcontrib>Ying, Hanjie</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Bioprocess and biosystems engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Dong</au><au>Chen, Yong</au><au>Li, An</au><au>Xie, Jingjing</au><au>Xiong, Jian</au><au>Bai, Jianxin</au><au>Chen, Xiaochun</au><au>Niu, Huanqing</au><au>Zhou, Tao</au><au>Ying, Hanjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced uridine 5′-monophosphate production by whole cell of Saccharomyces cerevisiae through rational redistribution of metabolic flux</atitle><jtitle>Bioprocess and biosystems engineering</jtitle><stitle>Bioprocess Biosyst Eng</stitle><addtitle>Bioprocess Biosyst Eng</addtitle><date>2012-06-01</date><risdate>2012</risdate><volume>35</volume><issue>5</issue><spage>729</spage><epage>737</epage><pages>729-737</pages><issn>1615-7591</issn><eissn>1615-7605</eissn><abstract>A whole-cell biocatalytic process for uridine 5′-monophosphate (UMP) production from orotic acid by Saccharomyces cerevisiae was developed. To rationally redistribute the metabolic flux between glycolysis and pentose phosphate pathway, statistical methods were employed first to find out the critical factors in the process. NaH 2 PO 4 , MgCl 2 and pH were found to be the important factors affecting UMP production significantly. The levels of these three factors required for the maximum production of UMP were determined: NaH 2 PO 4 22.1 g/L; MgCl 2 2.55 g/L; pH 8.15. An enhancement of UMP production from 6.12 to 8.13 g/L was achieved. A significant redistribution of metabolic fluxes was observed and the underlying mechanism was discussed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>22081050</pmid><doi>10.1007/s00449-011-0653-5</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-7591
ispartof Bioprocess and biosystems engineering, 2012-06, Vol.35 (5), p.729-737
issn 1615-7591
1615-7605
language eng
recordid cdi_proquest_miscellaneous_1017983722
source MEDLINE; SpringerLink Journals
subjects Biochemistry
Bioconversions. Hemisynthesis
Biological and medical sciences
Biotechnology
Chemistry
Chemistry and Materials Science
Environmental Engineering/Biotechnology
Enzymes
Food Science
Fundamental and applied biological sciences. Psychology
Hydrogen-Ion Concentration
Industrial and Production Engineering
Industrial Chemistry/Chemical Engineering
Magnesium Chloride - chemistry
Magnesium Chloride - metabolism
Metabolism
Methods. Procedures. Technologies
Original Paper
Orotic Acid - metabolism
Phosphates - chemistry
Phosphates - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae - metabolism
Statistical methods
Uridine Monophosphate - biosynthesis
Yeast
title Enhanced uridine 5′-monophosphate production by whole cell of Saccharomyces cerevisiae through rational redistribution of metabolic flux
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A45%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20uridine%205%E2%80%B2-monophosphate%20production%20by%20whole%20cell%20of%20Saccharomyces%20cerevisiae%20through%20rational%20redistribution%20of%20metabolic%20flux&rft.jtitle=Bioprocess%20and%20biosystems%20engineering&rft.au=Liu,%20Dong&rft.date=2012-06-01&rft.volume=35&rft.issue=5&rft.spage=729&rft.epage=737&rft.pages=729-737&rft.issn=1615-7591&rft.eissn=1615-7605&rft_id=info:doi/10.1007/s00449-011-0653-5&rft_dat=%3Cproquest_cross%3E2660307491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1013442331&rft_id=info:pmid/22081050&rfr_iscdi=true