Enhanced uridine 5′-monophosphate production by whole cell of Saccharomyces cerevisiae through rational redistribution of metabolic flux
A whole-cell biocatalytic process for uridine 5′-monophosphate (UMP) production from orotic acid by Saccharomyces cerevisiae was developed. To rationally redistribute the metabolic flux between glycolysis and pentose phosphate pathway, statistical methods were employed first to find out the critical...
Gespeichert in:
Veröffentlicht in: | Bioprocess and biosystems engineering 2012-06, Vol.35 (5), p.729-737 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 737 |
---|---|
container_issue | 5 |
container_start_page | 729 |
container_title | Bioprocess and biosystems engineering |
container_volume | 35 |
creator | Liu, Dong Chen, Yong Li, An Xie, Jingjing Xiong, Jian Bai, Jianxin Chen, Xiaochun Niu, Huanqing Zhou, Tao Ying, Hanjie |
description | A whole-cell biocatalytic process for uridine 5′-monophosphate (UMP) production from orotic acid by
Saccharomyces cerevisiae
was developed. To rationally redistribute the metabolic flux between glycolysis and pentose phosphate pathway, statistical methods were employed first to find out the critical factors in the process. NaH
2
PO
4
, MgCl
2
and pH were found to be the important factors affecting UMP production significantly. The levels of these three factors required for the maximum production of UMP were determined: NaH
2
PO
4
22.1 g/L; MgCl
2
2.55 g/L; pH 8.15. An enhancement of UMP production from 6.12 to 8.13 g/L was achieved. A significant redistribution of metabolic fluxes was observed and the underlying mechanism was discussed. |
doi_str_mv | 10.1007/s00449-011-0653-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1017983722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660307491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-146877ca23dcc0f4b6c1f8e156298678b67f4710f33ee470b881543f9603ba3</originalsourceid><addsrcrecordid>eNqNkc2KFDEUhQtRnB99ADcSEGE2pffmp5JayjD-wICLcV-kUslUhqpKm1TU3rn2cXwkn8T0dI-KILjKJfc7JzmcqnqC8AIB5MsEwHlbA2INjWC1uFcdY4Oilg2I-3ezaPGoOknpBgCFovCwOqIUFIKA4-rbxTLqxdiB5OgHv1gifnz9Xs9hCZsxpM2oV0s2MQzZrD4spN-Sz2OYLDF2mkhw5EobM-oY5q2xqdxG-8knry1Zxxjy9Uii3gn1RKIdfFqj7_OtU9HOdtV9mLwhbspfHlUPnJ6SfXw4T6ur1xcfzt_Wl-_fvDt_dVkbzsRaI2-UlEZTNhgDjveNQacsioa2qpGqb6TjEsExZi2X0CuFgjPXNsB6zU6rs71rCfUx27R2s0-7MHqxIacOAWWrmKT0f1BExRDbgj77C70JOZbUtxTjnDKGhcI9ZWJIKVrXbaKfddwWqNs12u0b7Ypxt2u0E0Xz9OCc-9kOvxR3FRbg-QHQyejJxVKnT785oSQDygtH91wqq-Xaxj-_-K_XfwKPEro0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1013442331</pqid></control><display><type>article</type><title>Enhanced uridine 5′-monophosphate production by whole cell of Saccharomyces cerevisiae through rational redistribution of metabolic flux</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Liu, Dong ; Chen, Yong ; Li, An ; Xie, Jingjing ; Xiong, Jian ; Bai, Jianxin ; Chen, Xiaochun ; Niu, Huanqing ; Zhou, Tao ; Ying, Hanjie</creator><creatorcontrib>Liu, Dong ; Chen, Yong ; Li, An ; Xie, Jingjing ; Xiong, Jian ; Bai, Jianxin ; Chen, Xiaochun ; Niu, Huanqing ; Zhou, Tao ; Ying, Hanjie</creatorcontrib><description>A whole-cell biocatalytic process for uridine 5′-monophosphate (UMP) production from orotic acid by
Saccharomyces cerevisiae
was developed. To rationally redistribute the metabolic flux between glycolysis and pentose phosphate pathway, statistical methods were employed first to find out the critical factors in the process. NaH
2
PO
4
, MgCl
2
and pH were found to be the important factors affecting UMP production significantly. The levels of these three factors required for the maximum production of UMP were determined: NaH
2
PO
4
22.1 g/L; MgCl
2
2.55 g/L; pH 8.15. An enhancement of UMP production from 6.12 to 8.13 g/L was achieved. A significant redistribution of metabolic fluxes was observed and the underlying mechanism was discussed.</description><identifier>ISSN: 1615-7591</identifier><identifier>EISSN: 1615-7605</identifier><identifier>DOI: 10.1007/s00449-011-0653-5</identifier><identifier>PMID: 22081050</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Biochemistry ; Bioconversions. Hemisynthesis ; Biological and medical sciences ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Environmental Engineering/Biotechnology ; Enzymes ; Food Science ; Fundamental and applied biological sciences. Psychology ; Hydrogen-Ion Concentration ; Industrial and Production Engineering ; Industrial Chemistry/Chemical Engineering ; Magnesium Chloride - chemistry ; Magnesium Chloride - metabolism ; Metabolism ; Methods. Procedures. Technologies ; Original Paper ; Orotic Acid - metabolism ; Phosphates - chemistry ; Phosphates - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - growth & development ; Saccharomyces cerevisiae - metabolism ; Statistical methods ; Uridine Monophosphate - biosynthesis ; Yeast</subject><ispartof>Bioprocess and biosystems engineering, 2012-06, Vol.35 (5), p.729-737</ispartof><rights>Springer-Verlag 2011</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-146877ca23dcc0f4b6c1f8e156298678b67f4710f33ee470b881543f9603ba3</citedby><cites>FETCH-LOGICAL-c435t-146877ca23dcc0f4b6c1f8e156298678b67f4710f33ee470b881543f9603ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00449-011-0653-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00449-011-0653-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25873024$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22081050$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Dong</creatorcontrib><creatorcontrib>Chen, Yong</creatorcontrib><creatorcontrib>Li, An</creatorcontrib><creatorcontrib>Xie, Jingjing</creatorcontrib><creatorcontrib>Xiong, Jian</creatorcontrib><creatorcontrib>Bai, Jianxin</creatorcontrib><creatorcontrib>Chen, Xiaochun</creatorcontrib><creatorcontrib>Niu, Huanqing</creatorcontrib><creatorcontrib>Zhou, Tao</creatorcontrib><creatorcontrib>Ying, Hanjie</creatorcontrib><title>Enhanced uridine 5′-monophosphate production by whole cell of Saccharomyces cerevisiae through rational redistribution of metabolic flux</title><title>Bioprocess and biosystems engineering</title><addtitle>Bioprocess Biosyst Eng</addtitle><addtitle>Bioprocess Biosyst Eng</addtitle><description>A whole-cell biocatalytic process for uridine 5′-monophosphate (UMP) production from orotic acid by
Saccharomyces cerevisiae
was developed. To rationally redistribute the metabolic flux between glycolysis and pentose phosphate pathway, statistical methods were employed first to find out the critical factors in the process. NaH
2
PO
4
, MgCl
2
and pH were found to be the important factors affecting UMP production significantly. The levels of these three factors required for the maximum production of UMP were determined: NaH
2
PO
4
22.1 g/L; MgCl
2
2.55 g/L; pH 8.15. An enhancement of UMP production from 6.12 to 8.13 g/L was achieved. A significant redistribution of metabolic fluxes was observed and the underlying mechanism was discussed.</description><subject>Biochemistry</subject><subject>Bioconversions. Hemisynthesis</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Enzymes</subject><subject>Food Science</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrogen-Ion Concentration</subject><subject>Industrial and Production Engineering</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Magnesium Chloride - chemistry</subject><subject>Magnesium Chloride - metabolism</subject><subject>Metabolism</subject><subject>Methods. Procedures. Technologies</subject><subject>Original Paper</subject><subject>Orotic Acid - metabolism</subject><subject>Phosphates - chemistry</subject><subject>Phosphates - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - growth & development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Statistical methods</subject><subject>Uridine Monophosphate - biosynthesis</subject><subject>Yeast</subject><issn>1615-7591</issn><issn>1615-7605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkc2KFDEUhQtRnB99ADcSEGE2pffmp5JayjD-wICLcV-kUslUhqpKm1TU3rn2cXwkn8T0dI-KILjKJfc7JzmcqnqC8AIB5MsEwHlbA2INjWC1uFcdY4Oilg2I-3ezaPGoOknpBgCFovCwOqIUFIKA4-rbxTLqxdiB5OgHv1gifnz9Xs9hCZsxpM2oV0s2MQzZrD4spN-Sz2OYLDF2mkhw5EobM-oY5q2xqdxG-8knry1Zxxjy9Uii3gn1RKIdfFqj7_OtU9HOdtV9mLwhbspfHlUPnJ6SfXw4T6ur1xcfzt_Wl-_fvDt_dVkbzsRaI2-UlEZTNhgDjveNQacsioa2qpGqb6TjEsExZi2X0CuFgjPXNsB6zU6rs71rCfUx27R2s0-7MHqxIacOAWWrmKT0f1BExRDbgj77C70JOZbUtxTjnDKGhcI9ZWJIKVrXbaKfddwWqNs12u0b7Ypxt2u0E0Xz9OCc-9kOvxR3FRbg-QHQyejJxVKnT785oSQDygtH91wqq-Xaxj-_-K_XfwKPEro0</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Liu, Dong</creator><creator>Chen, Yong</creator><creator>Li, An</creator><creator>Xie, Jingjing</creator><creator>Xiong, Jian</creator><creator>Bai, Jianxin</creator><creator>Chen, Xiaochun</creator><creator>Niu, Huanqing</creator><creator>Zhou, Tao</creator><creator>Ying, Hanjie</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20120601</creationdate><title>Enhanced uridine 5′-monophosphate production by whole cell of Saccharomyces cerevisiae through rational redistribution of metabolic flux</title><author>Liu, Dong ; Chen, Yong ; Li, An ; Xie, Jingjing ; Xiong, Jian ; Bai, Jianxin ; Chen, Xiaochun ; Niu, Huanqing ; Zhou, Tao ; Ying, Hanjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-146877ca23dcc0f4b6c1f8e156298678b67f4710f33ee470b881543f9603ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biochemistry</topic><topic>Bioconversions. Hemisynthesis</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Enzymes</topic><topic>Food Science</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrogen-Ion Concentration</topic><topic>Industrial and Production Engineering</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Magnesium Chloride - chemistry</topic><topic>Magnesium Chloride - metabolism</topic><topic>Metabolism</topic><topic>Methods. Procedures. Technologies</topic><topic>Original Paper</topic><topic>Orotic Acid - metabolism</topic><topic>Phosphates - chemistry</topic><topic>Phosphates - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - growth & development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Statistical methods</topic><topic>Uridine Monophosphate - biosynthesis</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Dong</creatorcontrib><creatorcontrib>Chen, Yong</creatorcontrib><creatorcontrib>Li, An</creatorcontrib><creatorcontrib>Xie, Jingjing</creatorcontrib><creatorcontrib>Xiong, Jian</creatorcontrib><creatorcontrib>Bai, Jianxin</creatorcontrib><creatorcontrib>Chen, Xiaochun</creatorcontrib><creatorcontrib>Niu, Huanqing</creatorcontrib><creatorcontrib>Zhou, Tao</creatorcontrib><creatorcontrib>Ying, Hanjie</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Bioprocess and biosystems engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Dong</au><au>Chen, Yong</au><au>Li, An</au><au>Xie, Jingjing</au><au>Xiong, Jian</au><au>Bai, Jianxin</au><au>Chen, Xiaochun</au><au>Niu, Huanqing</au><au>Zhou, Tao</au><au>Ying, Hanjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced uridine 5′-monophosphate production by whole cell of Saccharomyces cerevisiae through rational redistribution of metabolic flux</atitle><jtitle>Bioprocess and biosystems engineering</jtitle><stitle>Bioprocess Biosyst Eng</stitle><addtitle>Bioprocess Biosyst Eng</addtitle><date>2012-06-01</date><risdate>2012</risdate><volume>35</volume><issue>5</issue><spage>729</spage><epage>737</epage><pages>729-737</pages><issn>1615-7591</issn><eissn>1615-7605</eissn><abstract>A whole-cell biocatalytic process for uridine 5′-monophosphate (UMP) production from orotic acid by
Saccharomyces cerevisiae
was developed. To rationally redistribute the metabolic flux between glycolysis and pentose phosphate pathway, statistical methods were employed first to find out the critical factors in the process. NaH
2
PO
4
, MgCl
2
and pH were found to be the important factors affecting UMP production significantly. The levels of these three factors required for the maximum production of UMP were determined: NaH
2
PO
4
22.1 g/L; MgCl
2
2.55 g/L; pH 8.15. An enhancement of UMP production from 6.12 to 8.13 g/L was achieved. A significant redistribution of metabolic fluxes was observed and the underlying mechanism was discussed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>22081050</pmid><doi>10.1007/s00449-011-0653-5</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-7591 |
ispartof | Bioprocess and biosystems engineering, 2012-06, Vol.35 (5), p.729-737 |
issn | 1615-7591 1615-7605 |
language | eng |
recordid | cdi_proquest_miscellaneous_1017983722 |
source | MEDLINE; SpringerLink Journals |
subjects | Biochemistry Bioconversions. Hemisynthesis Biological and medical sciences Biotechnology Chemistry Chemistry and Materials Science Environmental Engineering/Biotechnology Enzymes Food Science Fundamental and applied biological sciences. Psychology Hydrogen-Ion Concentration Industrial and Production Engineering Industrial Chemistry/Chemical Engineering Magnesium Chloride - chemistry Magnesium Chloride - metabolism Metabolism Methods. Procedures. Technologies Original Paper Orotic Acid - metabolism Phosphates - chemistry Phosphates - metabolism Saccharomyces cerevisiae Saccharomyces cerevisiae - growth & development Saccharomyces cerevisiae - metabolism Statistical methods Uridine Monophosphate - biosynthesis Yeast |
title | Enhanced uridine 5′-monophosphate production by whole cell of Saccharomyces cerevisiae through rational redistribution of metabolic flux |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A45%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20uridine%205%E2%80%B2-monophosphate%20production%20by%20whole%20cell%20of%20Saccharomyces%20cerevisiae%20through%20rational%20redistribution%20of%20metabolic%20flux&rft.jtitle=Bioprocess%20and%20biosystems%20engineering&rft.au=Liu,%20Dong&rft.date=2012-06-01&rft.volume=35&rft.issue=5&rft.spage=729&rft.epage=737&rft.pages=729-737&rft.issn=1615-7591&rft.eissn=1615-7605&rft_id=info:doi/10.1007/s00449-011-0653-5&rft_dat=%3Cproquest_cross%3E2660307491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1013442331&rft_id=info:pmid/22081050&rfr_iscdi=true |