Relaxation dynamics of poly(vinylidene fluoride) studied by dynamical mechanical measurements and dielectric spectroscopy
The aim of this study is to analyze the mobility of polymer chains in semicrystalline poly(vinylidene fluoride) (PVDF). PVDF crystallizes from the melt in the α crystalline phase. The transformation from the α phase to the electroactive β phase can be induced by stretching at temperatures in the ran...
Gespeichert in:
Veröffentlicht in: | The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2012-05, Vol.35 (5), p.41-41, Article 41 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 41 |
---|---|
container_issue | 5 |
container_start_page | 41 |
container_title | The European physical journal. E, Soft matter and biological physics |
container_volume | 35 |
creator | Sencadas, V. Lanceros-Méndez, S. Sabater i Serra, R. Andrio Balado, A. Gómez Ribelles, J. L. |
description | The aim of this study is to analyze the mobility of polymer chains in semicrystalline poly(vinylidene fluoride) (PVDF). PVDF crystallizes from the melt in the
α
crystalline phase. The transformation from the
α
phase to the electroactive
β
phase can be induced by stretching at temperatures in the range between 80 and 140 °C. The spherulitic structure of the crystalline phase is deformed during stretching to form fibrils oriented in the direction of the strain. The amorphous phase confined among the crystalline lamellae is distorted as well and some degree of orientation of the polymer chains is expected. Dynamic-mechanical and dielectric spectroscopy measurements were performed in PVDF films stretched to strain ratios up to 5 at temperatures between 80 and 140 °C. Dynamic-mechanical measurements were conducted between −60 °C and melting and in this temperature range the relaxation spectra show the main relaxation of the amorphous phase (called
β
-relaxation) and at higher temperatures a relaxation related to crystallites motions (
α
c
-relaxation). Although the mean relaxation times of the
β
-relaxation are nearly equal in PVDF before and after crystal phase transformation, a significant change of shape of the relaxation spectrum proves the effect of chain distortion due to crystal reorganization. In stretched PVDF the elastic modulus of the polymer in the direction of deformation is significantly higher than in the transversal one, as expected by chain and crystals fibril orientation. The recovery of the deformation when the sample is heated is related with the appearance of the
α
c
-relaxation. Dielectric spectroscopy spectrum shows the main relaxation of the amorphous phase and a secondary process (
γ
-relaxation) at lower temperatures. Stretching produces significant changes in the relaxation processes, mainly in the strength and shape of the main relaxation
β
. The Havriliak-Negami function has been applied to analyze the dielectric response. |
doi_str_mv | 10.1140/epje/i2012-12041-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1017982206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1017982206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-901be5d252e10c0d11e80bf53d864f576cb53f54ab2fb0d6ca46cf876814bdc13</originalsourceid><addsrcrecordid>eNp9kE2LFDEQhoMo7of-AQ-Si7B7aDeVTmd6jrL4BQuCKHgL6aSiGdJJm3TL9L83szO73jzVC_W8lfAQ8grYWwDBbnDa4Y3nDHgDnAlo9k_IOfAtb_pt9-PpYxZwRi5K2THGaq19Ts44l0JAK8_J-hWD3uvZp0jtGvXoTaHJ0SmF9eqPj2vwFiNSF5aUa7ymZV6sR0uH9aGgAx3R_NLxFHVZMo4Y50J1tLTSAc2cvaFlOoRUTJrWF-SZ06Hgy9O8JN8_vP92-6m5-_Lx8-27u8YIxudmy2DAzvKOIzDDLAD2bHBda3spXLeRZuha1wk9cDcwK40W0rh-I3sQgzXQXpKr490pp98LllmNvhgMQUdMS1HAYLPtOWeyovyImvrHktGpKftR57VC6qBcHZSre-XqXrna19Lr0_1lGNE-Vh4cV-DNCdClCnJZR-PLP04ykKIVlWuPXKmr-BOz2qUlx-rmf8__BfManzU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1017982206</pqid></control><display><type>article</type><title>Relaxation dynamics of poly(vinylidene fluoride) studied by dynamical mechanical measurements and dielectric spectroscopy</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Sencadas, V. ; Lanceros-Méndez, S. ; Sabater i Serra, R. ; Andrio Balado, A. ; Gómez Ribelles, J. L.</creator><creatorcontrib>Sencadas, V. ; Lanceros-Méndez, S. ; Sabater i Serra, R. ; Andrio Balado, A. ; Gómez Ribelles, J. L.</creatorcontrib><description>The aim of this study is to analyze the mobility of polymer chains in semicrystalline poly(vinylidene fluoride) (PVDF). PVDF crystallizes from the melt in the
α
crystalline phase. The transformation from the
α
phase to the electroactive
β
phase can be induced by stretching at temperatures in the range between 80 and 140 °C. The spherulitic structure of the crystalline phase is deformed during stretching to form fibrils oriented in the direction of the strain. The amorphous phase confined among the crystalline lamellae is distorted as well and some degree of orientation of the polymer chains is expected. Dynamic-mechanical and dielectric spectroscopy measurements were performed in PVDF films stretched to strain ratios up to 5 at temperatures between 80 and 140 °C. Dynamic-mechanical measurements were conducted between −60 °C and melting and in this temperature range the relaxation spectra show the main relaxation of the amorphous phase (called
β
-relaxation) and at higher temperatures a relaxation related to crystallites motions (
α
c
-relaxation). Although the mean relaxation times of the
β
-relaxation are nearly equal in PVDF before and after crystal phase transformation, a significant change of shape of the relaxation spectrum proves the effect of chain distortion due to crystal reorganization. In stretched PVDF the elastic modulus of the polymer in the direction of deformation is significantly higher than in the transversal one, as expected by chain and crystals fibril orientation. The recovery of the deformation when the sample is heated is related with the appearance of the
α
c
-relaxation. Dielectric spectroscopy spectrum shows the main relaxation of the amorphous phase and a secondary process (
γ
-relaxation) at lower temperatures. Stretching produces significant changes in the relaxation processes, mainly in the strength and shape of the main relaxation
β
. The Havriliak-Negami function has been applied to analyze the dielectric response.</description><identifier>ISSN: 1292-8941</identifier><identifier>EISSN: 1292-895X</identifier><identifier>DOI: 10.1140/epje/i2012-12041-x</identifier><identifier>PMID: 22644136</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Applied sciences ; Biological and Medical Physics ; Biophysics ; Complex Fluids and Microfluidics ; Complex Systems ; Dielectric Spectroscopy ; Electrical, magnetic and optical properties ; Exact sciences and technology ; Hot Temperature ; Mechanical Phenomena ; Motion ; Nanotechnology ; Organic polymers ; Phase Transition ; Physicochemistry of polymers ; Physics ; Physics and Astronomy ; Polymer Sciences ; Polyvinyls ; Properties and characterization ; Regular Article ; Soft and Granular Matter ; Surfaces and Interfaces ; Thin Films</subject><ispartof>The European physical journal. E, Soft matter and biological physics, 2012-05, Vol.35 (5), p.41-41, Article 41</ispartof><rights>EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-901be5d252e10c0d11e80bf53d864f576cb53f54ab2fb0d6ca46cf876814bdc13</citedby><cites>FETCH-LOGICAL-c402t-901be5d252e10c0d11e80bf53d864f576cb53f54ab2fb0d6ca46cf876814bdc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epje/i2012-12041-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epje/i2012-12041-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26016434$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22644136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sencadas, V.</creatorcontrib><creatorcontrib>Lanceros-Méndez, S.</creatorcontrib><creatorcontrib>Sabater i Serra, R.</creatorcontrib><creatorcontrib>Andrio Balado, A.</creatorcontrib><creatorcontrib>Gómez Ribelles, J. L.</creatorcontrib><title>Relaxation dynamics of poly(vinylidene fluoride) studied by dynamical mechanical measurements and dielectric spectroscopy</title><title>The European physical journal. E, Soft matter and biological physics</title><addtitle>Eur. Phys. J. E</addtitle><addtitle>Eur Phys J E Soft Matter</addtitle><description>The aim of this study is to analyze the mobility of polymer chains in semicrystalline poly(vinylidene fluoride) (PVDF). PVDF crystallizes from the melt in the
α
crystalline phase. The transformation from the
α
phase to the electroactive
β
phase can be induced by stretching at temperatures in the range between 80 and 140 °C. The spherulitic structure of the crystalline phase is deformed during stretching to form fibrils oriented in the direction of the strain. The amorphous phase confined among the crystalline lamellae is distorted as well and some degree of orientation of the polymer chains is expected. Dynamic-mechanical and dielectric spectroscopy measurements were performed in PVDF films stretched to strain ratios up to 5 at temperatures between 80 and 140 °C. Dynamic-mechanical measurements were conducted between −60 °C and melting and in this temperature range the relaxation spectra show the main relaxation of the amorphous phase (called
β
-relaxation) and at higher temperatures a relaxation related to crystallites motions (
α
c
-relaxation). Although the mean relaxation times of the
β
-relaxation are nearly equal in PVDF before and after crystal phase transformation, a significant change of shape of the relaxation spectrum proves the effect of chain distortion due to crystal reorganization. In stretched PVDF the elastic modulus of the polymer in the direction of deformation is significantly higher than in the transversal one, as expected by chain and crystals fibril orientation. The recovery of the deformation when the sample is heated is related with the appearance of the
α
c
-relaxation. Dielectric spectroscopy spectrum shows the main relaxation of the amorphous phase and a secondary process (
γ
-relaxation) at lower temperatures. Stretching produces significant changes in the relaxation processes, mainly in the strength and shape of the main relaxation
β
. The Havriliak-Negami function has been applied to analyze the dielectric response.</description><subject>Applied sciences</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Complex Fluids and Microfluidics</subject><subject>Complex Systems</subject><subject>Dielectric Spectroscopy</subject><subject>Electrical, magnetic and optical properties</subject><subject>Exact sciences and technology</subject><subject>Hot Temperature</subject><subject>Mechanical Phenomena</subject><subject>Motion</subject><subject>Nanotechnology</subject><subject>Organic polymers</subject><subject>Phase Transition</subject><subject>Physicochemistry of polymers</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymer Sciences</subject><subject>Polyvinyls</subject><subject>Properties and characterization</subject><subject>Regular Article</subject><subject>Soft and Granular Matter</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1292-8941</issn><issn>1292-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE2LFDEQhoMo7of-AQ-Si7B7aDeVTmd6jrL4BQuCKHgL6aSiGdJJm3TL9L83szO73jzVC_W8lfAQ8grYWwDBbnDa4Y3nDHgDnAlo9k_IOfAtb_pt9-PpYxZwRi5K2THGaq19Ts44l0JAK8_J-hWD3uvZp0jtGvXoTaHJ0SmF9eqPj2vwFiNSF5aUa7ymZV6sR0uH9aGgAx3R_NLxFHVZMo4Y50J1tLTSAc2cvaFlOoRUTJrWF-SZ06Hgy9O8JN8_vP92-6m5-_Lx8-27u8YIxudmy2DAzvKOIzDDLAD2bHBda3spXLeRZuha1wk9cDcwK40W0rh-I3sQgzXQXpKr490pp98LllmNvhgMQUdMS1HAYLPtOWeyovyImvrHktGpKftR57VC6qBcHZSre-XqXrna19Lr0_1lGNE-Vh4cV-DNCdClCnJZR-PLP04ykKIVlWuPXKmr-BOz2qUlx-rmf8__BfManzU</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Sencadas, V.</creator><creator>Lanceros-Méndez, S.</creator><creator>Sabater i Serra, R.</creator><creator>Andrio Balado, A.</creator><creator>Gómez Ribelles, J. L.</creator><general>Springer-Verlag</general><general>EDP Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120501</creationdate><title>Relaxation dynamics of poly(vinylidene fluoride) studied by dynamical mechanical measurements and dielectric spectroscopy</title><author>Sencadas, V. ; Lanceros-Méndez, S. ; Sabater i Serra, R. ; Andrio Balado, A. ; Gómez Ribelles, J. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-901be5d252e10c0d11e80bf53d864f576cb53f54ab2fb0d6ca46cf876814bdc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Complex Fluids and Microfluidics</topic><topic>Complex Systems</topic><topic>Dielectric Spectroscopy</topic><topic>Electrical, magnetic and optical properties</topic><topic>Exact sciences and technology</topic><topic>Hot Temperature</topic><topic>Mechanical Phenomena</topic><topic>Motion</topic><topic>Nanotechnology</topic><topic>Organic polymers</topic><topic>Phase Transition</topic><topic>Physicochemistry of polymers</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymer Sciences</topic><topic>Polyvinyls</topic><topic>Properties and characterization</topic><topic>Regular Article</topic><topic>Soft and Granular Matter</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sencadas, V.</creatorcontrib><creatorcontrib>Lanceros-Méndez, S.</creatorcontrib><creatorcontrib>Sabater i Serra, R.</creatorcontrib><creatorcontrib>Andrio Balado, A.</creatorcontrib><creatorcontrib>Gómez Ribelles, J. L.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sencadas, V.</au><au>Lanceros-Méndez, S.</au><au>Sabater i Serra, R.</au><au>Andrio Balado, A.</au><au>Gómez Ribelles, J. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relaxation dynamics of poly(vinylidene fluoride) studied by dynamical mechanical measurements and dielectric spectroscopy</atitle><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle><stitle>Eur. Phys. J. E</stitle><addtitle>Eur Phys J E Soft Matter</addtitle><date>2012-05-01</date><risdate>2012</risdate><volume>35</volume><issue>5</issue><spage>41</spage><epage>41</epage><pages>41-41</pages><artnum>41</artnum><issn>1292-8941</issn><eissn>1292-895X</eissn><abstract>The aim of this study is to analyze the mobility of polymer chains in semicrystalline poly(vinylidene fluoride) (PVDF). PVDF crystallizes from the melt in the
α
crystalline phase. The transformation from the
α
phase to the electroactive
β
phase can be induced by stretching at temperatures in the range between 80 and 140 °C. The spherulitic structure of the crystalline phase is deformed during stretching to form fibrils oriented in the direction of the strain. The amorphous phase confined among the crystalline lamellae is distorted as well and some degree of orientation of the polymer chains is expected. Dynamic-mechanical and dielectric spectroscopy measurements were performed in PVDF films stretched to strain ratios up to 5 at temperatures between 80 and 140 °C. Dynamic-mechanical measurements were conducted between −60 °C and melting and in this temperature range the relaxation spectra show the main relaxation of the amorphous phase (called
β
-relaxation) and at higher temperatures a relaxation related to crystallites motions (
α
c
-relaxation). Although the mean relaxation times of the
β
-relaxation are nearly equal in PVDF before and after crystal phase transformation, a significant change of shape of the relaxation spectrum proves the effect of chain distortion due to crystal reorganization. In stretched PVDF the elastic modulus of the polymer in the direction of deformation is significantly higher than in the transversal one, as expected by chain and crystals fibril orientation. The recovery of the deformation when the sample is heated is related with the appearance of the
α
c
-relaxation. Dielectric spectroscopy spectrum shows the main relaxation of the amorphous phase and a secondary process (
γ
-relaxation) at lower temperatures. Stretching produces significant changes in the relaxation processes, mainly in the strength and shape of the main relaxation
β
. The Havriliak-Negami function has been applied to analyze the dielectric response.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>22644136</pmid><doi>10.1140/epje/i2012-12041-x</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1292-8941 |
ispartof | The European physical journal. E, Soft matter and biological physics, 2012-05, Vol.35 (5), p.41-41, Article 41 |
issn | 1292-8941 1292-895X |
language | eng |
recordid | cdi_proquest_miscellaneous_1017982206 |
source | MEDLINE; SpringerNature Journals |
subjects | Applied sciences Biological and Medical Physics Biophysics Complex Fluids and Microfluidics Complex Systems Dielectric Spectroscopy Electrical, magnetic and optical properties Exact sciences and technology Hot Temperature Mechanical Phenomena Motion Nanotechnology Organic polymers Phase Transition Physicochemistry of polymers Physics Physics and Astronomy Polymer Sciences Polyvinyls Properties and characterization Regular Article Soft and Granular Matter Surfaces and Interfaces Thin Films |
title | Relaxation dynamics of poly(vinylidene fluoride) studied by dynamical mechanical measurements and dielectric spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A39%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relaxation%20dynamics%20of%20poly(vinylidene%20fluoride)%20studied%20by%20dynamical%20mechanical%20measurements%20and%20dielectric%20spectroscopy&rft.jtitle=The%20European%20physical%20journal.%20E,%20Soft%20matter%20and%20biological%20physics&rft.au=Sencadas,%20V.&rft.date=2012-05-01&rft.volume=35&rft.issue=5&rft.spage=41&rft.epage=41&rft.pages=41-41&rft.artnum=41&rft.issn=1292-8941&rft.eissn=1292-895X&rft_id=info:doi/10.1140/epje/i2012-12041-x&rft_dat=%3Cproquest_cross%3E1017982206%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1017982206&rft_id=info:pmid/22644136&rfr_iscdi=true |