Optimizing potentiometric ionophore and electrode design for environmental on-site control of antibiotic drugs: Application to sulfamethoxazole

▸ Plastic antibodies designed by surface imprint on graphitic carbon nanostructures. ▸ An electrical-based sensor made from pipette tips. ▸ On-site detection of organic drugs. Potentiometric sensors are typically unable to carry out on-site monitoring of environmental drug contaminants because of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2012-05, Vol.35 (1), p.319-326
Hauptverfasser: Almeida, S.A.A., Truta, Liliana A.A.N.A., Queirós, Raquel B., Montenegro, M.C.B.S.M., Cunha, Alexandre L., Sales, M.G.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 326
container_issue 1
container_start_page 319
container_title Biosensors & bioelectronics
container_volume 35
creator Almeida, S.A.A.
Truta, Liliana A.A.N.A.
Queirós, Raquel B.
Montenegro, M.C.B.S.M.
Cunha, Alexandre L.
Sales, M.G.F.
description ▸ Plastic antibodies designed by surface imprint on graphitic carbon nanostructures. ▸ An electrical-based sensor made from pipette tips. ▸ On-site detection of organic drugs. Potentiometric sensors are typically unable to carry out on-site monitoring of environmental drug contaminants because of their high limits of detection (LODs). Designing a novel ligand material for the target analyte and managing the composition of the internal reference solution have been the strategies employed here to produce for the first time a potentiometric-based direct reading method for an environmental drug contaminant. This concept has been applied to sulfamethoxazole (SMX), one of the many antibiotics used in aquaculture practices that may occur in environmental waters. The novel ligand has been produced by imprinting SMX on the surface of graphitic carbon nanostructures (CN)
doi_str_mv 10.1016/j.bios.2012.03.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1017977036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S095656631200173X</els_id><sourcerecordid>1017977036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-f0bdb62499663f46ee1278235c2bc4142a1418f040a889acef38b08c23c37593</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EokPhBVggb5DYJPgvTozYVBV_UqVuurcc53rqUWIH26mgL8Er49EMsGNlWfrOufeeg9BrSlpKqHx_aEcfc8sIZS3hLSH9E7SjQ88bwXj3FO2I6mTTSckv0IucD6QSVJHn6IIxITshuh36dbsWv_hHH_Z4jQVC8XGBkrzFPoa43scE2IQJwwy2pDgBniD7fcAuJgzhwacYliozM46hyb4AtjFUsv5dVRZflyzVbkrbPn_AV-s6e2vqmIBLxHmbnakD7-MP8xhneImeOTNneHV-L9Hd509311-bm9sv366vbhorFC2NI-M0SiaUqtc5IQEo64d6tWWjFVQwQwUdHBHEDIMyFhwfRjJYxi3vO8Uv0buT7Zri9w1y0YvPFubZBIhb1jXfXvU94bKi7ITaFHNO4PSa_GLSzwodOakP-tiDPvagCdc15Sp6c_bfxgWmv5I_wVfg7Rkw2ZrZJROsz_-4TlHFuiP38cRBDePBQ9LZeggWJp9qIXqK_n97_AYBb6n1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1017977036</pqid></control><display><type>article</type><title>Optimizing potentiometric ionophore and electrode design for environmental on-site control of antibiotic drugs: Application to sulfamethoxazole</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Almeida, S.A.A. ; Truta, Liliana A.A.N.A. ; Queirós, Raquel B. ; Montenegro, M.C.B.S.M. ; Cunha, Alexandre L. ; Sales, M.G.F.</creator><creatorcontrib>Almeida, S.A.A. ; Truta, Liliana A.A.N.A. ; Queirós, Raquel B. ; Montenegro, M.C.B.S.M. ; Cunha, Alexandre L. ; Sales, M.G.F.</creatorcontrib><description>▸ Plastic antibodies designed by surface imprint on graphitic carbon nanostructures. ▸ An electrical-based sensor made from pipette tips. ▸ On-site detection of organic drugs. Potentiometric sensors are typically unable to carry out on-site monitoring of environmental drug contaminants because of their high limits of detection (LODs). Designing a novel ligand material for the target analyte and managing the composition of the internal reference solution have been the strategies employed here to produce for the first time a potentiometric-based direct reading method for an environmental drug contaminant. This concept has been applied to sulfamethoxazole (SMX), one of the many antibiotics used in aquaculture practices that may occur in environmental waters. The novel ligand has been produced by imprinting SMX on the surface of graphitic carbon nanostructures (CN)&lt;500nm. The imprinted carbon nanostructures (ICN) were dispersed in plasticizer and entrapped in a PVC matrix that included (or not) a small amount of a lipophilic additive. The membrane composition was optimized on solid-contact electrodes, allowing near-Nernstian responses down to 5.2μg/mL and detecting 1.6μg/mL. The membranes offered good selectivity against most of the ionic compounds in environmental water. The best membrane cocktail was applied on the smaller end of a 1000μL micropipette tip made of polypropylene. The tip was then filled with inner reference solution containing SMX and chlorate (as interfering compound). The corresponding concentrations were studied for 1×10−5 to 1×10−10 and 1×10−3 to 1×10−8mol/L. The best condition allowed the detection of 5.92ng/L (or 2.3×10−8mol/L) SMX for a sub-Nernstian slope of −40.3mV/decade from 5.0×10−8 to 2.4×10−5mol/L. The described sensors were found promising devices for field applications. The good selectivity of the sensory materials together with a carefully selected composition for the inner reference solution allowed LODs near the nanomolar range. Both solid-contact and “pipette tip”-based sensors were successfully applied to the analysis of aquaculture waters.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2012.03.007</identifier><identifier>PMID: 22465445</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Animals ; Anti-Bacterial Agents - analysis ; Antibiotic contaminants ; Aquaculture ; Biological and medical sciences ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Biosensing Techniques - statistics &amp; numerical data ; Biotechnology ; Electrodes ; Equipment Design ; Fundamental and applied biological sciences. Psychology ; Hydrogen-Ion Concentration ; Ionophores ; Limit of Detection ; Low detection limit ; Molecular Imprinting ; Nanotubes, Carbon ; Plastic antibodies ; Potentiometry ; Potentiometry - instrumentation ; Potentiometry - methods ; Potentiometry - statistics &amp; numerical data ; Solid-contact electrodes ; Spectroscopy, Fourier Transform Infrared ; Spectrum Analysis, Raman ; Sulfamethoxazole - analysis ; Water Pollutants, Chemical - analysis</subject><ispartof>Biosensors &amp; bioelectronics, 2012-05, Vol.35 (1), p.319-326</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-f0bdb62499663f46ee1278235c2bc4142a1418f040a889acef38b08c23c37593</citedby><cites>FETCH-LOGICAL-c491t-f0bdb62499663f46ee1278235c2bc4142a1418f040a889acef38b08c23c37593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S095656631200173X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25919255$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22465445$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Almeida, S.A.A.</creatorcontrib><creatorcontrib>Truta, Liliana A.A.N.A.</creatorcontrib><creatorcontrib>Queirós, Raquel B.</creatorcontrib><creatorcontrib>Montenegro, M.C.B.S.M.</creatorcontrib><creatorcontrib>Cunha, Alexandre L.</creatorcontrib><creatorcontrib>Sales, M.G.F.</creatorcontrib><title>Optimizing potentiometric ionophore and electrode design for environmental on-site control of antibiotic drugs: Application to sulfamethoxazole</title><title>Biosensors &amp; bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>▸ Plastic antibodies designed by surface imprint on graphitic carbon nanostructures. ▸ An electrical-based sensor made from pipette tips. ▸ On-site detection of organic drugs. Potentiometric sensors are typically unable to carry out on-site monitoring of environmental drug contaminants because of their high limits of detection (LODs). Designing a novel ligand material for the target analyte and managing the composition of the internal reference solution have been the strategies employed here to produce for the first time a potentiometric-based direct reading method for an environmental drug contaminant. This concept has been applied to sulfamethoxazole (SMX), one of the many antibiotics used in aquaculture practices that may occur in environmental waters. The novel ligand has been produced by imprinting SMX on the surface of graphitic carbon nanostructures (CN)&lt;500nm. The imprinted carbon nanostructures (ICN) were dispersed in plasticizer and entrapped in a PVC matrix that included (or not) a small amount of a lipophilic additive. The membrane composition was optimized on solid-contact electrodes, allowing near-Nernstian responses down to 5.2μg/mL and detecting 1.6μg/mL. The membranes offered good selectivity against most of the ionic compounds in environmental water. The best membrane cocktail was applied on the smaller end of a 1000μL micropipette tip made of polypropylene. The tip was then filled with inner reference solution containing SMX and chlorate (as interfering compound). The corresponding concentrations were studied for 1×10−5 to 1×10−10 and 1×10−3 to 1×10−8mol/L. The best condition allowed the detection of 5.92ng/L (or 2.3×10−8mol/L) SMX for a sub-Nernstian slope of −40.3mV/decade from 5.0×10−8 to 2.4×10−5mol/L. The described sensors were found promising devices for field applications. The good selectivity of the sensory materials together with a carefully selected composition for the inner reference solution allowed LODs near the nanomolar range. Both solid-contact and “pipette tip”-based sensors were successfully applied to the analysis of aquaculture waters.</description><subject>Animals</subject><subject>Anti-Bacterial Agents - analysis</subject><subject>Antibiotic contaminants</subject><subject>Aquaculture</subject><subject>Biological and medical sciences</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensing Techniques - statistics &amp; numerical data</subject><subject>Biotechnology</subject><subject>Electrodes</subject><subject>Equipment Design</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrogen-Ion Concentration</subject><subject>Ionophores</subject><subject>Limit of Detection</subject><subject>Low detection limit</subject><subject>Molecular Imprinting</subject><subject>Nanotubes, Carbon</subject><subject>Plastic antibodies</subject><subject>Potentiometry</subject><subject>Potentiometry - instrumentation</subject><subject>Potentiometry - methods</subject><subject>Potentiometry - statistics &amp; numerical data</subject><subject>Solid-contact electrodes</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Spectrum Analysis, Raman</subject><subject>Sulfamethoxazole - analysis</subject><subject>Water Pollutants, Chemical - analysis</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhS0EokPhBVggb5DYJPgvTozYVBV_UqVuurcc53rqUWIH26mgL8Er49EMsGNlWfrOufeeg9BrSlpKqHx_aEcfc8sIZS3hLSH9E7SjQ88bwXj3FO2I6mTTSckv0IucD6QSVJHn6IIxITshuh36dbsWv_hHH_Z4jQVC8XGBkrzFPoa43scE2IQJwwy2pDgBniD7fcAuJgzhwacYliozM46hyb4AtjFUsv5dVRZflyzVbkrbPn_AV-s6e2vqmIBLxHmbnakD7-MP8xhneImeOTNneHV-L9Hd509311-bm9sv366vbhorFC2NI-M0SiaUqtc5IQEo64d6tWWjFVQwQwUdHBHEDIMyFhwfRjJYxi3vO8Uv0buT7Zri9w1y0YvPFubZBIhb1jXfXvU94bKi7ITaFHNO4PSa_GLSzwodOakP-tiDPvagCdc15Sp6c_bfxgWmv5I_wVfg7Rkw2ZrZJROsz_-4TlHFuiP38cRBDePBQ9LZeggWJp9qIXqK_n97_AYBb6n1</recordid><startdate>20120515</startdate><enddate>20120515</enddate><creator>Almeida, S.A.A.</creator><creator>Truta, Liliana A.A.N.A.</creator><creator>Queirós, Raquel B.</creator><creator>Montenegro, M.C.B.S.M.</creator><creator>Cunha, Alexandre L.</creator><creator>Sales, M.G.F.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20120515</creationdate><title>Optimizing potentiometric ionophore and electrode design for environmental on-site control of antibiotic drugs: Application to sulfamethoxazole</title><author>Almeida, S.A.A. ; Truta, Liliana A.A.N.A. ; Queirós, Raquel B. ; Montenegro, M.C.B.S.M. ; Cunha, Alexandre L. ; Sales, M.G.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-f0bdb62499663f46ee1278235c2bc4142a1418f040a889acef38b08c23c37593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Anti-Bacterial Agents - analysis</topic><topic>Antibiotic contaminants</topic><topic>Aquaculture</topic><topic>Biological and medical sciences</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensing Techniques - statistics &amp; numerical data</topic><topic>Biotechnology</topic><topic>Electrodes</topic><topic>Equipment Design</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrogen-Ion Concentration</topic><topic>Ionophores</topic><topic>Limit of Detection</topic><topic>Low detection limit</topic><topic>Molecular Imprinting</topic><topic>Nanotubes, Carbon</topic><topic>Plastic antibodies</topic><topic>Potentiometry</topic><topic>Potentiometry - instrumentation</topic><topic>Potentiometry - methods</topic><topic>Potentiometry - statistics &amp; numerical data</topic><topic>Solid-contact electrodes</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Spectrum Analysis, Raman</topic><topic>Sulfamethoxazole - analysis</topic><topic>Water Pollutants, Chemical - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almeida, S.A.A.</creatorcontrib><creatorcontrib>Truta, Liliana A.A.N.A.</creatorcontrib><creatorcontrib>Queirós, Raquel B.</creatorcontrib><creatorcontrib>Montenegro, M.C.B.S.M.</creatorcontrib><creatorcontrib>Cunha, Alexandre L.</creatorcontrib><creatorcontrib>Sales, M.G.F.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biosensors &amp; bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almeida, S.A.A.</au><au>Truta, Liliana A.A.N.A.</au><au>Queirós, Raquel B.</au><au>Montenegro, M.C.B.S.M.</au><au>Cunha, Alexandre L.</au><au>Sales, M.G.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing potentiometric ionophore and electrode design for environmental on-site control of antibiotic drugs: Application to sulfamethoxazole</atitle><jtitle>Biosensors &amp; bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2012-05-15</date><risdate>2012</risdate><volume>35</volume><issue>1</issue><spage>319</spage><epage>326</epage><pages>319-326</pages><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>▸ Plastic antibodies designed by surface imprint on graphitic carbon nanostructures. ▸ An electrical-based sensor made from pipette tips. ▸ On-site detection of organic drugs. Potentiometric sensors are typically unable to carry out on-site monitoring of environmental drug contaminants because of their high limits of detection (LODs). Designing a novel ligand material for the target analyte and managing the composition of the internal reference solution have been the strategies employed here to produce for the first time a potentiometric-based direct reading method for an environmental drug contaminant. This concept has been applied to sulfamethoxazole (SMX), one of the many antibiotics used in aquaculture practices that may occur in environmental waters. The novel ligand has been produced by imprinting SMX on the surface of graphitic carbon nanostructures (CN)&lt;500nm. The imprinted carbon nanostructures (ICN) were dispersed in plasticizer and entrapped in a PVC matrix that included (or not) a small amount of a lipophilic additive. The membrane composition was optimized on solid-contact electrodes, allowing near-Nernstian responses down to 5.2μg/mL and detecting 1.6μg/mL. The membranes offered good selectivity against most of the ionic compounds in environmental water. The best membrane cocktail was applied on the smaller end of a 1000μL micropipette tip made of polypropylene. The tip was then filled with inner reference solution containing SMX and chlorate (as interfering compound). The corresponding concentrations were studied for 1×10−5 to 1×10−10 and 1×10−3 to 1×10−8mol/L. The best condition allowed the detection of 5.92ng/L (or 2.3×10−8mol/L) SMX for a sub-Nernstian slope of −40.3mV/decade from 5.0×10−8 to 2.4×10−5mol/L. The described sensors were found promising devices for field applications. The good selectivity of the sensory materials together with a carefully selected composition for the inner reference solution allowed LODs near the nanomolar range. Both solid-contact and “pipette tip”-based sensors were successfully applied to the analysis of aquaculture waters.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>22465445</pmid><doi>10.1016/j.bios.2012.03.007</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0956-5663
ispartof Biosensors & bioelectronics, 2012-05, Vol.35 (1), p.319-326
issn 0956-5663
1873-4235
language eng
recordid cdi_proquest_miscellaneous_1017977036
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Anti-Bacterial Agents - analysis
Antibiotic contaminants
Aquaculture
Biological and medical sciences
Biosensing Techniques - instrumentation
Biosensing Techniques - methods
Biosensing Techniques - statistics & numerical data
Biotechnology
Electrodes
Equipment Design
Fundamental and applied biological sciences. Psychology
Hydrogen-Ion Concentration
Ionophores
Limit of Detection
Low detection limit
Molecular Imprinting
Nanotubes, Carbon
Plastic antibodies
Potentiometry
Potentiometry - instrumentation
Potentiometry - methods
Potentiometry - statistics & numerical data
Solid-contact electrodes
Spectroscopy, Fourier Transform Infrared
Spectrum Analysis, Raman
Sulfamethoxazole - analysis
Water Pollutants, Chemical - analysis
title Optimizing potentiometric ionophore and electrode design for environmental on-site control of antibiotic drugs: Application to sulfamethoxazole
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A07%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20potentiometric%20ionophore%20and%20electrode%20design%20for%20environmental%20on-site%20control%20of%20antibiotic%20drugs:%20Application%20to%20sulfamethoxazole&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Almeida,%20S.A.A.&rft.date=2012-05-15&rft.volume=35&rft.issue=1&rft.spage=319&rft.epage=326&rft.pages=319-326&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2012.03.007&rft_dat=%3Cproquest_cross%3E1017977036%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1017977036&rft_id=info:pmid/22465445&rft_els_id=S095656631200173X&rfr_iscdi=true