A quantitative study of detection mechanism of a label-free impedance biosensor using ultrananocrystalline diamond microelectrode array
▸ We demonstrate a highly reproducible, multiplex biosensor using diamond substrates. ▸ A circuit model was constructed to explain impedance change upon bacteria binding. ▸ A unique two-Q behavior was observed due to nano scale grains and grain boundaries. ▸ Higher sensitivity was achieved by micro...
Gespeichert in:
Veröffentlicht in: | Biosensors & bioelectronics 2012-05, Vol.35 (1), p.284-290 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 290 |
---|---|
container_issue | 1 |
container_start_page | 284 |
container_title | Biosensors & bioelectronics |
container_volume | 35 |
creator | Siddiqui, Shabnam Dai, Zhenting Stavis, Courtney J. Zeng, Hongjun Moldovan, Nicolaie Hamers, Robert J. Carlisle, John A. Arumugam, Prabhu U. |
description | ▸ We demonstrate a highly reproducible, multiplex biosensor using diamond substrates. ▸ A circuit model was constructed to explain impedance change upon bacteria binding. ▸ A unique two-Q behavior was observed due to nano scale grains and grain boundaries. ▸ Higher sensitivity was achieved by micro patterning the diamond substrate.
It is well recognized that label-free biosensors are the only class of sensors that can rapidly detect antigens in real-time and provide remote environmental monitoring and point-of-care diagnosis that is low-cost, specific, and sensitive. Electrical impedance spectroscopy (EIS) based label-free biosensors have been used to detect a wide variety of antigens including bacteria, viruses, DNA, and proteins due to the simplicity of their detection technique. However, their commercial development has been hindered due to difficulty in interpreting the change in impedance upon antigen binding and poor signal reproducibility as a result of surface fouling and non-specific binding. In this study, we develop a circuit model to adequately describe the physical changes at bio functionalized surface and provide an understanding of the detection mechanism based on electron exchange between electrolyte and surface through pores surrounding antibody–antigen. The model was successfully applied to extract quantitative information about the bio surface at different stages of surface functionalization. Further, we demonstrate boron-doped ultrananocrystalline diamond (UNCD) microelectrode array (3×3 format, 200μm diameter) improves signal reproducibility significantly and increases sensitivity by four orders of magnitude. This study marks the first demonstration of UNCD array based biosensor that can reliably detect a model Escherichia coli K12 bacterium using EIS, positioning this technology for rapid adoption in point-of-use applications. |
doi_str_mv | 10.1016/j.bios.2012.03.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1017975448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S095656631200142X</els_id><sourcerecordid>1017975448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-cdcb8f92e0dc726f0a34f2aebe1368757d3f7ff87df6e6aa0d08efcabb4fcda33</originalsourceid><addsrcrecordid>eNqNkcuKFDEUhgtRnHb0BVxINoKbanOpqlSBm2HwBgNudB1OJSeaJpX0JKmBfgJf2xTd6k5cBcJ3_px8f9O8ZHTPKBveHvazi3nPKeN7KvaUskfNjo1StB0X_eNmR6d-aPthEFfNs5wPlFLJJvq0ueK86wc6yV3z84bcrxCKK1DcA5JcVnMi0RKDBXVxMZAF9Q8ILi_bNRAPM_rWJkTiliMaCBrJtgiGHBNZswvfyepLggAh6nTKBbx3AYlxsMRgyOJ0iuhrfIoGCaQEp-fNEws-44vLed18-_D-6-2n9u7Lx8-3N3et7sa-tNroebQTR2q05IOlIDrLAWdkYhhlL42w0tpRGjvgAEANHdFqmOfOagNCXDdvzrnHFO9XzEUtLmv0HgLGNasqVk6y77rxf1A29vVdXlF-RuvHck5o1TG5BdKpQhs3qIPaFKmtK0WFql3VoVeX_HVe0PwZ-V1OBV5fAMgavK1Gtct_uX5iE--myr07c1jFPThMKmuHtRbjUpWsTHT_2uMXBw23GA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1011851362</pqid></control><display><type>article</type><title>A quantitative study of detection mechanism of a label-free impedance biosensor using ultrananocrystalline diamond microelectrode array</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Siddiqui, Shabnam ; Dai, Zhenting ; Stavis, Courtney J. ; Zeng, Hongjun ; Moldovan, Nicolaie ; Hamers, Robert J. ; Carlisle, John A. ; Arumugam, Prabhu U.</creator><creatorcontrib>Siddiqui, Shabnam ; Dai, Zhenting ; Stavis, Courtney J. ; Zeng, Hongjun ; Moldovan, Nicolaie ; Hamers, Robert J. ; Carlisle, John A. ; Arumugam, Prabhu U.</creatorcontrib><description>▸ We demonstrate a highly reproducible, multiplex biosensor using diamond substrates. ▸ A circuit model was constructed to explain impedance change upon bacteria binding. ▸ A unique two-Q behavior was observed due to nano scale grains and grain boundaries. ▸ Higher sensitivity was achieved by micro patterning the diamond substrate.
It is well recognized that label-free biosensors are the only class of sensors that can rapidly detect antigens in real-time and provide remote environmental monitoring and point-of-care diagnosis that is low-cost, specific, and sensitive. Electrical impedance spectroscopy (EIS) based label-free biosensors have been used to detect a wide variety of antigens including bacteria, viruses, DNA, and proteins due to the simplicity of their detection technique. However, their commercial development has been hindered due to difficulty in interpreting the change in impedance upon antigen binding and poor signal reproducibility as a result of surface fouling and non-specific binding. In this study, we develop a circuit model to adequately describe the physical changes at bio functionalized surface and provide an understanding of the detection mechanism based on electron exchange between electrolyte and surface through pores surrounding antibody–antigen. The model was successfully applied to extract quantitative information about the bio surface at different stages of surface functionalization. Further, we demonstrate boron-doped ultrananocrystalline diamond (UNCD) microelectrode array (3×3 format, 200μm diameter) improves signal reproducibility significantly and increases sensitivity by four orders of magnitude. This study marks the first demonstration of UNCD array based biosensor that can reliably detect a model Escherichia coli K12 bacterium using EIS, positioning this technology for rapid adoption in point-of-use applications.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2012.03.001</identifier><identifier>PMID: 22456097</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Antibodies, Bacterial ; Antibodies, Immobilized ; Antigens - analysis ; Antigens, Bacterial - analysis ; Biological and medical sciences ; Biosensing Techniques - methods ; Biosensing Techniques - statistics & numerical data ; Biosensor ; Biosensors ; Biotechnology ; Diamond ; Dielectric Spectroscopy ; Electrochemical impedance spectroscopy ; Electrochemical Techniques ; Escherichia coli ; Escherichia coli K12 - immunology ; Escherichia coli K12 - isolation & purification ; Fundamental and applied biological sciences. Psychology ; Label-free ; Methods. Procedures. Technologies ; Microelectrode array ; Microelectrodes ; Nanocrystalline diamond ; Nanoparticles - ultrastructure ; Reproducibility of Results ; Surface Properties ; Various methods and equipments ; Water-borne pathogen</subject><ispartof>Biosensors & bioelectronics, 2012-05, Vol.35 (1), p.284-290</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-cdcb8f92e0dc726f0a34f2aebe1368757d3f7ff87df6e6aa0d08efcabb4fcda33</citedby><cites>FETCH-LOGICAL-c485t-cdcb8f92e0dc726f0a34f2aebe1368757d3f7ff87df6e6aa0d08efcabb4fcda33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S095656631200142X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25919249$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22456097$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Siddiqui, Shabnam</creatorcontrib><creatorcontrib>Dai, Zhenting</creatorcontrib><creatorcontrib>Stavis, Courtney J.</creatorcontrib><creatorcontrib>Zeng, Hongjun</creatorcontrib><creatorcontrib>Moldovan, Nicolaie</creatorcontrib><creatorcontrib>Hamers, Robert J.</creatorcontrib><creatorcontrib>Carlisle, John A.</creatorcontrib><creatorcontrib>Arumugam, Prabhu U.</creatorcontrib><title>A quantitative study of detection mechanism of a label-free impedance biosensor using ultrananocrystalline diamond microelectrode array</title><title>Biosensors & bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>▸ We demonstrate a highly reproducible, multiplex biosensor using diamond substrates. ▸ A circuit model was constructed to explain impedance change upon bacteria binding. ▸ A unique two-Q behavior was observed due to nano scale grains and grain boundaries. ▸ Higher sensitivity was achieved by micro patterning the diamond substrate.
It is well recognized that label-free biosensors are the only class of sensors that can rapidly detect antigens in real-time and provide remote environmental monitoring and point-of-care diagnosis that is low-cost, specific, and sensitive. Electrical impedance spectroscopy (EIS) based label-free biosensors have been used to detect a wide variety of antigens including bacteria, viruses, DNA, and proteins due to the simplicity of their detection technique. However, their commercial development has been hindered due to difficulty in interpreting the change in impedance upon antigen binding and poor signal reproducibility as a result of surface fouling and non-specific binding. In this study, we develop a circuit model to adequately describe the physical changes at bio functionalized surface and provide an understanding of the detection mechanism based on electron exchange between electrolyte and surface through pores surrounding antibody–antigen. The model was successfully applied to extract quantitative information about the bio surface at different stages of surface functionalization. Further, we demonstrate boron-doped ultrananocrystalline diamond (UNCD) microelectrode array (3×3 format, 200μm diameter) improves signal reproducibility significantly and increases sensitivity by four orders of magnitude. This study marks the first demonstration of UNCD array based biosensor that can reliably detect a model Escherichia coli K12 bacterium using EIS, positioning this technology for rapid adoption in point-of-use applications.</description><subject>Antibodies, Bacterial</subject><subject>Antibodies, Immobilized</subject><subject>Antigens - analysis</subject><subject>Antigens, Bacterial - analysis</subject><subject>Biological and medical sciences</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensing Techniques - statistics & numerical data</subject><subject>Biosensor</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Diamond</subject><subject>Dielectric Spectroscopy</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemical Techniques</subject><subject>Escherichia coli</subject><subject>Escherichia coli K12 - immunology</subject><subject>Escherichia coli K12 - isolation & purification</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Label-free</subject><subject>Methods. Procedures. Technologies</subject><subject>Microelectrode array</subject><subject>Microelectrodes</subject><subject>Nanocrystalline diamond</subject><subject>Nanoparticles - ultrastructure</subject><subject>Reproducibility of Results</subject><subject>Surface Properties</subject><subject>Various methods and equipments</subject><subject>Water-borne pathogen</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcuKFDEUhgtRnHb0BVxINoKbanOpqlSBm2HwBgNudB1OJSeaJpX0JKmBfgJf2xTd6k5cBcJ3_px8f9O8ZHTPKBveHvazi3nPKeN7KvaUskfNjo1StB0X_eNmR6d-aPthEFfNs5wPlFLJJvq0ueK86wc6yV3z84bcrxCKK1DcA5JcVnMi0RKDBXVxMZAF9Q8ILi_bNRAPM_rWJkTiliMaCBrJtgiGHBNZswvfyepLggAh6nTKBbx3AYlxsMRgyOJ0iuhrfIoGCaQEp-fNEws-44vLed18-_D-6-2n9u7Lx8-3N3et7sa-tNroebQTR2q05IOlIDrLAWdkYhhlL42w0tpRGjvgAEANHdFqmOfOagNCXDdvzrnHFO9XzEUtLmv0HgLGNasqVk6y77rxf1A29vVdXlF-RuvHck5o1TG5BdKpQhs3qIPaFKmtK0WFql3VoVeX_HVe0PwZ-V1OBV5fAMgavK1Gtct_uX5iE--myr07c1jFPThMKmuHtRbjUpWsTHT_2uMXBw23GA</recordid><startdate>20120515</startdate><enddate>20120515</enddate><creator>Siddiqui, Shabnam</creator><creator>Dai, Zhenting</creator><creator>Stavis, Courtney J.</creator><creator>Zeng, Hongjun</creator><creator>Moldovan, Nicolaie</creator><creator>Hamers, Robert J.</creator><creator>Carlisle, John A.</creator><creator>Arumugam, Prabhu U.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20120515</creationdate><title>A quantitative study of detection mechanism of a label-free impedance biosensor using ultrananocrystalline diamond microelectrode array</title><author>Siddiqui, Shabnam ; Dai, Zhenting ; Stavis, Courtney J. ; Zeng, Hongjun ; Moldovan, Nicolaie ; Hamers, Robert J. ; Carlisle, John A. ; Arumugam, Prabhu U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-cdcb8f92e0dc726f0a34f2aebe1368757d3f7ff87df6e6aa0d08efcabb4fcda33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Antibodies, Bacterial</topic><topic>Antibodies, Immobilized</topic><topic>Antigens - analysis</topic><topic>Antigens, Bacterial - analysis</topic><topic>Biological and medical sciences</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensing Techniques - statistics & numerical data</topic><topic>Biosensor</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Diamond</topic><topic>Dielectric Spectroscopy</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemical Techniques</topic><topic>Escherichia coli</topic><topic>Escherichia coli K12 - immunology</topic><topic>Escherichia coli K12 - isolation & purification</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Label-free</topic><topic>Methods. Procedures. Technologies</topic><topic>Microelectrode array</topic><topic>Microelectrodes</topic><topic>Nanocrystalline diamond</topic><topic>Nanoparticles - ultrastructure</topic><topic>Reproducibility of Results</topic><topic>Surface Properties</topic><topic>Various methods and equipments</topic><topic>Water-borne pathogen</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siddiqui, Shabnam</creatorcontrib><creatorcontrib>Dai, Zhenting</creatorcontrib><creatorcontrib>Stavis, Courtney J.</creatorcontrib><creatorcontrib>Zeng, Hongjun</creatorcontrib><creatorcontrib>Moldovan, Nicolaie</creatorcontrib><creatorcontrib>Hamers, Robert J.</creatorcontrib><creatorcontrib>Carlisle, John A.</creatorcontrib><creatorcontrib>Arumugam, Prabhu U.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biosensors & bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siddiqui, Shabnam</au><au>Dai, Zhenting</au><au>Stavis, Courtney J.</au><au>Zeng, Hongjun</au><au>Moldovan, Nicolaie</au><au>Hamers, Robert J.</au><au>Carlisle, John A.</au><au>Arumugam, Prabhu U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A quantitative study of detection mechanism of a label-free impedance biosensor using ultrananocrystalline diamond microelectrode array</atitle><jtitle>Biosensors & bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2012-05-15</date><risdate>2012</risdate><volume>35</volume><issue>1</issue><spage>284</spage><epage>290</epage><pages>284-290</pages><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>▸ We demonstrate a highly reproducible, multiplex biosensor using diamond substrates. ▸ A circuit model was constructed to explain impedance change upon bacteria binding. ▸ A unique two-Q behavior was observed due to nano scale grains and grain boundaries. ▸ Higher sensitivity was achieved by micro patterning the diamond substrate.
It is well recognized that label-free biosensors are the only class of sensors that can rapidly detect antigens in real-time and provide remote environmental monitoring and point-of-care diagnosis that is low-cost, specific, and sensitive. Electrical impedance spectroscopy (EIS) based label-free biosensors have been used to detect a wide variety of antigens including bacteria, viruses, DNA, and proteins due to the simplicity of their detection technique. However, their commercial development has been hindered due to difficulty in interpreting the change in impedance upon antigen binding and poor signal reproducibility as a result of surface fouling and non-specific binding. In this study, we develop a circuit model to adequately describe the physical changes at bio functionalized surface and provide an understanding of the detection mechanism based on electron exchange between electrolyte and surface through pores surrounding antibody–antigen. The model was successfully applied to extract quantitative information about the bio surface at different stages of surface functionalization. Further, we demonstrate boron-doped ultrananocrystalline diamond (UNCD) microelectrode array (3×3 format, 200μm diameter) improves signal reproducibility significantly and increases sensitivity by four orders of magnitude. This study marks the first demonstration of UNCD array based biosensor that can reliably detect a model Escherichia coli K12 bacterium using EIS, positioning this technology for rapid adoption in point-of-use applications.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>22456097</pmid><doi>10.1016/j.bios.2012.03.001</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-5663 |
ispartof | Biosensors & bioelectronics, 2012-05, Vol.35 (1), p.284-290 |
issn | 0956-5663 1873-4235 |
language | eng |
recordid | cdi_proquest_miscellaneous_1017975448 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Antibodies, Bacterial Antibodies, Immobilized Antigens - analysis Antigens, Bacterial - analysis Biological and medical sciences Biosensing Techniques - methods Biosensing Techniques - statistics & numerical data Biosensor Biosensors Biotechnology Diamond Dielectric Spectroscopy Electrochemical impedance spectroscopy Electrochemical Techniques Escherichia coli Escherichia coli K12 - immunology Escherichia coli K12 - isolation & purification Fundamental and applied biological sciences. Psychology Label-free Methods. Procedures. Technologies Microelectrode array Microelectrodes Nanocrystalline diamond Nanoparticles - ultrastructure Reproducibility of Results Surface Properties Various methods and equipments Water-borne pathogen |
title | A quantitative study of detection mechanism of a label-free impedance biosensor using ultrananocrystalline diamond microelectrode array |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T05%3A53%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20quantitative%20study%20of%20detection%20mechanism%20of%20a%20label-free%20impedance%20biosensor%20using%20ultrananocrystalline%20diamond%20microelectrode%20array&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Siddiqui,%20Shabnam&rft.date=2012-05-15&rft.volume=35&rft.issue=1&rft.spage=284&rft.epage=290&rft.pages=284-290&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2012.03.001&rft_dat=%3Cproquest_cross%3E1017975448%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1011851362&rft_id=info:pmid/22456097&rft_els_id=S095656631200142X&rfr_iscdi=true |