A quantitative study of detection mechanism of a label-free impedance biosensor using ultrananocrystalline diamond microelectrode array

▸ We demonstrate a highly reproducible, multiplex biosensor using diamond substrates. ▸ A circuit model was constructed to explain impedance change upon bacteria binding. ▸ A unique two-Q behavior was observed due to nano scale grains and grain boundaries. ▸ Higher sensitivity was achieved by micro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2012-05, Vol.35 (1), p.284-290
Hauptverfasser: Siddiqui, Shabnam, Dai, Zhenting, Stavis, Courtney J., Zeng, Hongjun, Moldovan, Nicolaie, Hamers, Robert J., Carlisle, John A., Arumugam, Prabhu U.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 290
container_issue 1
container_start_page 284
container_title Biosensors & bioelectronics
container_volume 35
creator Siddiqui, Shabnam
Dai, Zhenting
Stavis, Courtney J.
Zeng, Hongjun
Moldovan, Nicolaie
Hamers, Robert J.
Carlisle, John A.
Arumugam, Prabhu U.
description ▸ We demonstrate a highly reproducible, multiplex biosensor using diamond substrates. ▸ A circuit model was constructed to explain impedance change upon bacteria binding. ▸ A unique two-Q behavior was observed due to nano scale grains and grain boundaries. ▸ Higher sensitivity was achieved by micro patterning the diamond substrate. It is well recognized that label-free biosensors are the only class of sensors that can rapidly detect antigens in real-time and provide remote environmental monitoring and point-of-care diagnosis that is low-cost, specific, and sensitive. Electrical impedance spectroscopy (EIS) based label-free biosensors have been used to detect a wide variety of antigens including bacteria, viruses, DNA, and proteins due to the simplicity of their detection technique. However, their commercial development has been hindered due to difficulty in interpreting the change in impedance upon antigen binding and poor signal reproducibility as a result of surface fouling and non-specific binding. In this study, we develop a circuit model to adequately describe the physical changes at bio functionalized surface and provide an understanding of the detection mechanism based on electron exchange between electrolyte and surface through pores surrounding antibody–antigen. The model was successfully applied to extract quantitative information about the bio surface at different stages of surface functionalization. Further, we demonstrate boron-doped ultrananocrystalline diamond (UNCD) microelectrode array (3×3 format, 200μm diameter) improves signal reproducibility significantly and increases sensitivity by four orders of magnitude. This study marks the first demonstration of UNCD array based biosensor that can reliably detect a model Escherichia coli K12 bacterium using EIS, positioning this technology for rapid adoption in point-of-use applications.
doi_str_mv 10.1016/j.bios.2012.03.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1017975448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S095656631200142X</els_id><sourcerecordid>1017975448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-cdcb8f92e0dc726f0a34f2aebe1368757d3f7ff87df6e6aa0d08efcabb4fcda33</originalsourceid><addsrcrecordid>eNqNkcuKFDEUhgtRnHb0BVxINoKbanOpqlSBm2HwBgNudB1OJSeaJpX0JKmBfgJf2xTd6k5cBcJ3_px8f9O8ZHTPKBveHvazi3nPKeN7KvaUskfNjo1StB0X_eNmR6d-aPthEFfNs5wPlFLJJvq0ueK86wc6yV3z84bcrxCKK1DcA5JcVnMi0RKDBXVxMZAF9Q8ILi_bNRAPM_rWJkTiliMaCBrJtgiGHBNZswvfyepLggAh6nTKBbx3AYlxsMRgyOJ0iuhrfIoGCaQEp-fNEws-44vLed18-_D-6-2n9u7Lx8-3N3et7sa-tNroebQTR2q05IOlIDrLAWdkYhhlL42w0tpRGjvgAEANHdFqmOfOagNCXDdvzrnHFO9XzEUtLmv0HgLGNasqVk6y77rxf1A29vVdXlF-RuvHck5o1TG5BdKpQhs3qIPaFKmtK0WFql3VoVeX_HVe0PwZ-V1OBV5fAMgavK1Gtct_uX5iE--myr07c1jFPThMKmuHtRbjUpWsTHT_2uMXBw23GA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1011851362</pqid></control><display><type>article</type><title>A quantitative study of detection mechanism of a label-free impedance biosensor using ultrananocrystalline diamond microelectrode array</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Siddiqui, Shabnam ; Dai, Zhenting ; Stavis, Courtney J. ; Zeng, Hongjun ; Moldovan, Nicolaie ; Hamers, Robert J. ; Carlisle, John A. ; Arumugam, Prabhu U.</creator><creatorcontrib>Siddiqui, Shabnam ; Dai, Zhenting ; Stavis, Courtney J. ; Zeng, Hongjun ; Moldovan, Nicolaie ; Hamers, Robert J. ; Carlisle, John A. ; Arumugam, Prabhu U.</creatorcontrib><description>▸ We demonstrate a highly reproducible, multiplex biosensor using diamond substrates. ▸ A circuit model was constructed to explain impedance change upon bacteria binding. ▸ A unique two-Q behavior was observed due to nano scale grains and grain boundaries. ▸ Higher sensitivity was achieved by micro patterning the diamond substrate. It is well recognized that label-free biosensors are the only class of sensors that can rapidly detect antigens in real-time and provide remote environmental monitoring and point-of-care diagnosis that is low-cost, specific, and sensitive. Electrical impedance spectroscopy (EIS) based label-free biosensors have been used to detect a wide variety of antigens including bacteria, viruses, DNA, and proteins due to the simplicity of their detection technique. However, their commercial development has been hindered due to difficulty in interpreting the change in impedance upon antigen binding and poor signal reproducibility as a result of surface fouling and non-specific binding. In this study, we develop a circuit model to adequately describe the physical changes at bio functionalized surface and provide an understanding of the detection mechanism based on electron exchange between electrolyte and surface through pores surrounding antibody–antigen. The model was successfully applied to extract quantitative information about the bio surface at different stages of surface functionalization. Further, we demonstrate boron-doped ultrananocrystalline diamond (UNCD) microelectrode array (3×3 format, 200μm diameter) improves signal reproducibility significantly and increases sensitivity by four orders of magnitude. This study marks the first demonstration of UNCD array based biosensor that can reliably detect a model Escherichia coli K12 bacterium using EIS, positioning this technology for rapid adoption in point-of-use applications.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2012.03.001</identifier><identifier>PMID: 22456097</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Antibodies, Bacterial ; Antibodies, Immobilized ; Antigens - analysis ; Antigens, Bacterial - analysis ; Biological and medical sciences ; Biosensing Techniques - methods ; Biosensing Techniques - statistics &amp; numerical data ; Biosensor ; Biosensors ; Biotechnology ; Diamond ; Dielectric Spectroscopy ; Electrochemical impedance spectroscopy ; Electrochemical Techniques ; Escherichia coli ; Escherichia coli K12 - immunology ; Escherichia coli K12 - isolation &amp; purification ; Fundamental and applied biological sciences. Psychology ; Label-free ; Methods. Procedures. Technologies ; Microelectrode array ; Microelectrodes ; Nanocrystalline diamond ; Nanoparticles - ultrastructure ; Reproducibility of Results ; Surface Properties ; Various methods and equipments ; Water-borne pathogen</subject><ispartof>Biosensors &amp; bioelectronics, 2012-05, Vol.35 (1), p.284-290</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-cdcb8f92e0dc726f0a34f2aebe1368757d3f7ff87df6e6aa0d08efcabb4fcda33</citedby><cites>FETCH-LOGICAL-c485t-cdcb8f92e0dc726f0a34f2aebe1368757d3f7ff87df6e6aa0d08efcabb4fcda33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S095656631200142X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25919249$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22456097$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Siddiqui, Shabnam</creatorcontrib><creatorcontrib>Dai, Zhenting</creatorcontrib><creatorcontrib>Stavis, Courtney J.</creatorcontrib><creatorcontrib>Zeng, Hongjun</creatorcontrib><creatorcontrib>Moldovan, Nicolaie</creatorcontrib><creatorcontrib>Hamers, Robert J.</creatorcontrib><creatorcontrib>Carlisle, John A.</creatorcontrib><creatorcontrib>Arumugam, Prabhu U.</creatorcontrib><title>A quantitative study of detection mechanism of a label-free impedance biosensor using ultrananocrystalline diamond microelectrode array</title><title>Biosensors &amp; bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>▸ We demonstrate a highly reproducible, multiplex biosensor using diamond substrates. ▸ A circuit model was constructed to explain impedance change upon bacteria binding. ▸ A unique two-Q behavior was observed due to nano scale grains and grain boundaries. ▸ Higher sensitivity was achieved by micro patterning the diamond substrate. It is well recognized that label-free biosensors are the only class of sensors that can rapidly detect antigens in real-time and provide remote environmental monitoring and point-of-care diagnosis that is low-cost, specific, and sensitive. Electrical impedance spectroscopy (EIS) based label-free biosensors have been used to detect a wide variety of antigens including bacteria, viruses, DNA, and proteins due to the simplicity of their detection technique. However, their commercial development has been hindered due to difficulty in interpreting the change in impedance upon antigen binding and poor signal reproducibility as a result of surface fouling and non-specific binding. In this study, we develop a circuit model to adequately describe the physical changes at bio functionalized surface and provide an understanding of the detection mechanism based on electron exchange between electrolyte and surface through pores surrounding antibody–antigen. The model was successfully applied to extract quantitative information about the bio surface at different stages of surface functionalization. Further, we demonstrate boron-doped ultrananocrystalline diamond (UNCD) microelectrode array (3×3 format, 200μm diameter) improves signal reproducibility significantly and increases sensitivity by four orders of magnitude. This study marks the first demonstration of UNCD array based biosensor that can reliably detect a model Escherichia coli K12 bacterium using EIS, positioning this technology for rapid adoption in point-of-use applications.</description><subject>Antibodies, Bacterial</subject><subject>Antibodies, Immobilized</subject><subject>Antigens - analysis</subject><subject>Antigens, Bacterial - analysis</subject><subject>Biological and medical sciences</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensing Techniques - statistics &amp; numerical data</subject><subject>Biosensor</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Diamond</subject><subject>Dielectric Spectroscopy</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemical Techniques</subject><subject>Escherichia coli</subject><subject>Escherichia coli K12 - immunology</subject><subject>Escherichia coli K12 - isolation &amp; purification</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Label-free</subject><subject>Methods. Procedures. Technologies</subject><subject>Microelectrode array</subject><subject>Microelectrodes</subject><subject>Nanocrystalline diamond</subject><subject>Nanoparticles - ultrastructure</subject><subject>Reproducibility of Results</subject><subject>Surface Properties</subject><subject>Various methods and equipments</subject><subject>Water-borne pathogen</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcuKFDEUhgtRnHb0BVxINoKbanOpqlSBm2HwBgNudB1OJSeaJpX0JKmBfgJf2xTd6k5cBcJ3_px8f9O8ZHTPKBveHvazi3nPKeN7KvaUskfNjo1StB0X_eNmR6d-aPthEFfNs5wPlFLJJvq0ueK86wc6yV3z84bcrxCKK1DcA5JcVnMi0RKDBXVxMZAF9Q8ILi_bNRAPM_rWJkTiliMaCBrJtgiGHBNZswvfyepLggAh6nTKBbx3AYlxsMRgyOJ0iuhrfIoGCaQEp-fNEws-44vLed18-_D-6-2n9u7Lx8-3N3et7sa-tNroebQTR2q05IOlIDrLAWdkYhhlL42w0tpRGjvgAEANHdFqmOfOagNCXDdvzrnHFO9XzEUtLmv0HgLGNasqVk6y77rxf1A29vVdXlF-RuvHck5o1TG5BdKpQhs3qIPaFKmtK0WFql3VoVeX_HVe0PwZ-V1OBV5fAMgavK1Gtct_uX5iE--myr07c1jFPThMKmuHtRbjUpWsTHT_2uMXBw23GA</recordid><startdate>20120515</startdate><enddate>20120515</enddate><creator>Siddiqui, Shabnam</creator><creator>Dai, Zhenting</creator><creator>Stavis, Courtney J.</creator><creator>Zeng, Hongjun</creator><creator>Moldovan, Nicolaie</creator><creator>Hamers, Robert J.</creator><creator>Carlisle, John A.</creator><creator>Arumugam, Prabhu U.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20120515</creationdate><title>A quantitative study of detection mechanism of a label-free impedance biosensor using ultrananocrystalline diamond microelectrode array</title><author>Siddiqui, Shabnam ; Dai, Zhenting ; Stavis, Courtney J. ; Zeng, Hongjun ; Moldovan, Nicolaie ; Hamers, Robert J. ; Carlisle, John A. ; Arumugam, Prabhu U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-cdcb8f92e0dc726f0a34f2aebe1368757d3f7ff87df6e6aa0d08efcabb4fcda33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Antibodies, Bacterial</topic><topic>Antibodies, Immobilized</topic><topic>Antigens - analysis</topic><topic>Antigens, Bacterial - analysis</topic><topic>Biological and medical sciences</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensing Techniques - statistics &amp; numerical data</topic><topic>Biosensor</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Diamond</topic><topic>Dielectric Spectroscopy</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemical Techniques</topic><topic>Escherichia coli</topic><topic>Escherichia coli K12 - immunology</topic><topic>Escherichia coli K12 - isolation &amp; purification</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Label-free</topic><topic>Methods. Procedures. Technologies</topic><topic>Microelectrode array</topic><topic>Microelectrodes</topic><topic>Nanocrystalline diamond</topic><topic>Nanoparticles - ultrastructure</topic><topic>Reproducibility of Results</topic><topic>Surface Properties</topic><topic>Various methods and equipments</topic><topic>Water-borne pathogen</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siddiqui, Shabnam</creatorcontrib><creatorcontrib>Dai, Zhenting</creatorcontrib><creatorcontrib>Stavis, Courtney J.</creatorcontrib><creatorcontrib>Zeng, Hongjun</creatorcontrib><creatorcontrib>Moldovan, Nicolaie</creatorcontrib><creatorcontrib>Hamers, Robert J.</creatorcontrib><creatorcontrib>Carlisle, John A.</creatorcontrib><creatorcontrib>Arumugam, Prabhu U.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biosensors &amp; bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siddiqui, Shabnam</au><au>Dai, Zhenting</au><au>Stavis, Courtney J.</au><au>Zeng, Hongjun</au><au>Moldovan, Nicolaie</au><au>Hamers, Robert J.</au><au>Carlisle, John A.</au><au>Arumugam, Prabhu U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A quantitative study of detection mechanism of a label-free impedance biosensor using ultrananocrystalline diamond microelectrode array</atitle><jtitle>Biosensors &amp; bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2012-05-15</date><risdate>2012</risdate><volume>35</volume><issue>1</issue><spage>284</spage><epage>290</epage><pages>284-290</pages><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>▸ We demonstrate a highly reproducible, multiplex biosensor using diamond substrates. ▸ A circuit model was constructed to explain impedance change upon bacteria binding. ▸ A unique two-Q behavior was observed due to nano scale grains and grain boundaries. ▸ Higher sensitivity was achieved by micro patterning the diamond substrate. It is well recognized that label-free biosensors are the only class of sensors that can rapidly detect antigens in real-time and provide remote environmental monitoring and point-of-care diagnosis that is low-cost, specific, and sensitive. Electrical impedance spectroscopy (EIS) based label-free biosensors have been used to detect a wide variety of antigens including bacteria, viruses, DNA, and proteins due to the simplicity of their detection technique. However, their commercial development has been hindered due to difficulty in interpreting the change in impedance upon antigen binding and poor signal reproducibility as a result of surface fouling and non-specific binding. In this study, we develop a circuit model to adequately describe the physical changes at bio functionalized surface and provide an understanding of the detection mechanism based on electron exchange between electrolyte and surface through pores surrounding antibody–antigen. The model was successfully applied to extract quantitative information about the bio surface at different stages of surface functionalization. Further, we demonstrate boron-doped ultrananocrystalline diamond (UNCD) microelectrode array (3×3 format, 200μm diameter) improves signal reproducibility significantly and increases sensitivity by four orders of magnitude. This study marks the first demonstration of UNCD array based biosensor that can reliably detect a model Escherichia coli K12 bacterium using EIS, positioning this technology for rapid adoption in point-of-use applications.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>22456097</pmid><doi>10.1016/j.bios.2012.03.001</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0956-5663
ispartof Biosensors & bioelectronics, 2012-05, Vol.35 (1), p.284-290
issn 0956-5663
1873-4235
language eng
recordid cdi_proquest_miscellaneous_1017975448
source MEDLINE; Elsevier ScienceDirect Journals
subjects Antibodies, Bacterial
Antibodies, Immobilized
Antigens - analysis
Antigens, Bacterial - analysis
Biological and medical sciences
Biosensing Techniques - methods
Biosensing Techniques - statistics & numerical data
Biosensor
Biosensors
Biotechnology
Diamond
Dielectric Spectroscopy
Electrochemical impedance spectroscopy
Electrochemical Techniques
Escherichia coli
Escherichia coli K12 - immunology
Escherichia coli K12 - isolation & purification
Fundamental and applied biological sciences. Psychology
Label-free
Methods. Procedures. Technologies
Microelectrode array
Microelectrodes
Nanocrystalline diamond
Nanoparticles - ultrastructure
Reproducibility of Results
Surface Properties
Various methods and equipments
Water-borne pathogen
title A quantitative study of detection mechanism of a label-free impedance biosensor using ultrananocrystalline diamond microelectrode array
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T05%3A53%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20quantitative%20study%20of%20detection%20mechanism%20of%20a%20label-free%20impedance%20biosensor%20using%20ultrananocrystalline%20diamond%20microelectrode%20array&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Siddiqui,%20Shabnam&rft.date=2012-05-15&rft.volume=35&rft.issue=1&rft.spage=284&rft.epage=290&rft.pages=284-290&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2012.03.001&rft_dat=%3Cproquest_cross%3E1017975448%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1011851362&rft_id=info:pmid/22456097&rft_els_id=S095656631200142X&rfr_iscdi=true