Operational model evaluation for particulate matter in Europe and North America in the context of AQMEII

Ten state-of-the-science regional air quality (AQ) modeling systems have been applied to continental-scale domains in North America and Europe for full-year simulations of 2006 in the context of Air Quality Model Evaluation International Initiative (AQMEII), whose main goals are model inter-comparis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric environment 2012-06, Vol.53, p.75-92
Hauptverfasser: Solazzo, Efisio, Bianconi, Roberto, Pirovano, Guido, Matthias, Volker, Vautard, Robert, Moran, Michael D., Wyat Appel, K., Bessagnet, Bertrand, Brandt, Jørgen, Christensen, Jesper H., Chemel, Charles, Coll, Isabelle, Ferreira, Joana, Forkel, Renate, Francis, Xavier V., Grell, Georg, Grossi, Paola, Hansen, Ayoe B., Miranda, Ana Isabel, Nopmongcol, Uarporn, Prank, Marje, Sartelet, Karine N., Schaap, Martijn, Silver, Jeremy D., Sokhi, Ranjeet S., Vira, Julius, Werhahn, Johannes, Wolke, Ralf, Yarwood, Greg, Zhang, Junhua, Rao, S. Trivikrama, Galmarini, Stefano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 92
container_issue
container_start_page 75
container_title Atmospheric environment
container_volume 53
creator Solazzo, Efisio
Bianconi, Roberto
Pirovano, Guido
Matthias, Volker
Vautard, Robert
Moran, Michael D.
Wyat Appel, K.
Bessagnet, Bertrand
Brandt, Jørgen
Christensen, Jesper H.
Chemel, Charles
Coll, Isabelle
Ferreira, Joana
Forkel, Renate
Francis, Xavier V.
Grell, Georg
Grossi, Paola
Hansen, Ayoe B.
Miranda, Ana Isabel
Nopmongcol, Uarporn
Prank, Marje
Sartelet, Karine N.
Schaap, Martijn
Silver, Jeremy D.
Sokhi, Ranjeet S.
Vira, Julius
Werhahn, Johannes
Wolke, Ralf
Yarwood, Greg
Zhang, Junhua
Rao, S. Trivikrama
Galmarini, Stefano
description Ten state-of-the-science regional air quality (AQ) modeling systems have been applied to continental-scale domains in North America and Europe for full-year simulations of 2006 in the context of Air Quality Model Evaluation International Initiative (AQMEII), whose main goals are model inter-comparison and evaluation. Standardised modeling outputs from each group have been shared on the web-distributed ENSEMBLE system, which allows statistical and ensemble analyses to be performed. In this study, the one-year model simulations are inter-compared and evaluated with a large set of observations for ground-level particulate matter (PM10 and PM2.5) and its chemical components. Modeled concentrations of gaseous PM precursors, SO2 and NO2, have also been evaluated against observational data for both continents. Furthermore, modeled deposition (dry and wet) and emissions of several species relevant to PM are also inter-compared. The unprecedented scale of the exercise (two continents, one full year, fifteen modeling groups) allows for a detailed description of AQ model skill and uncertainty with respect to PM. Analyses of PM10 yearly time series and mean diurnal cycle show a large underestimation throughout the year for the AQ models included in AQMEII. The possible causes of PM bias, including errors in the emissions and meteorological inputs (e.g., wind speed and precipitation), and the calculated deposition are investigated. Further analysis of the coarse PM components, PM2.5 and its major components (SO4, NH4, NO3, elemental carbon), have also been performed, and the model performance for each component evaluated against measurements. Finally, the ability of the models to capture high PM concentrations has been evaluated by examining two separate PM2.5 episodes in Europe and North America. A large variability among models in predicting emissions, deposition, and concentration of PM and its precursors during the episodes has been found. Major challenges still remain with regards to identifying and eliminating the sources of PM bias in the models. Although PM2.5 was found to be much better estimated by the models than PM10, no model was found to consistently match the observations for all locations throughout the entire year.
doi_str_mv 10.1016/j.atmosenv.2012.02.045
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_1017974582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1352231012001604</els_id><sourcerecordid>1017974582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-f92e60c7783743cecb7a5bdea962c8ddeeec605e9ad6a8ab5220eaf5306ab613</originalsourceid><addsrcrecordid>eNqFkcGO1DAMhisEEsvCK0COHOjgJG3a3hitBnakgRViOUee1GUyapuSpKPl7Um3wBXJkq3k82_rd5a95rDhwNX78wbj4AKNl40ALjaQoiifZFe8rmQu6qJ4mmpZilxIDs-zFyGcAUBWTXWVne4m8hitG7Fng2upZ3TBfn58Yp3zbEIfrZl7jMQGjJE8syPbzd5NxHBs2Rfn44ltB_LW4PIXT8SMGyM9ROY6tv36ebffv8yeddgHevUnX2f3H3f3N7f54e7T_mZ7yE1RQ8y7RpACU1W1rAppyBwrLI8tYaOEqduWiIyCkhpsFdZ4LIUAwq6UoPCouLzO3q2yJ-z15O2A_pd2aPXt9qDtmHYMGqBRUlb8suBvV3zy7udMIerBBkN9jyO5OehkcLKpKGuRULWixrsQPHX_5DksnNJn_fcQejmEhhRFmRrfrI0dOo0_lg2-f0tACcCbWj5Kf1gJSsZcLHkdjKXRUGs9mahbZ_835Dcoi59w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1017974582</pqid></control><display><type>article</type><title>Operational model evaluation for particulate matter in Europe and North America in the context of AQMEII</title><source>Elsevier ScienceDirect Journals</source><creator>Solazzo, Efisio ; Bianconi, Roberto ; Pirovano, Guido ; Matthias, Volker ; Vautard, Robert ; Moran, Michael D. ; Wyat Appel, K. ; Bessagnet, Bertrand ; Brandt, Jørgen ; Christensen, Jesper H. ; Chemel, Charles ; Coll, Isabelle ; Ferreira, Joana ; Forkel, Renate ; Francis, Xavier V. ; Grell, Georg ; Grossi, Paola ; Hansen, Ayoe B. ; Miranda, Ana Isabel ; Nopmongcol, Uarporn ; Prank, Marje ; Sartelet, Karine N. ; Schaap, Martijn ; Silver, Jeremy D. ; Sokhi, Ranjeet S. ; Vira, Julius ; Werhahn, Johannes ; Wolke, Ralf ; Yarwood, Greg ; Zhang, Junhua ; Rao, S. Trivikrama ; Galmarini, Stefano</creator><creatorcontrib>Solazzo, Efisio ; Bianconi, Roberto ; Pirovano, Guido ; Matthias, Volker ; Vautard, Robert ; Moran, Michael D. ; Wyat Appel, K. ; Bessagnet, Bertrand ; Brandt, Jørgen ; Christensen, Jesper H. ; Chemel, Charles ; Coll, Isabelle ; Ferreira, Joana ; Forkel, Renate ; Francis, Xavier V. ; Grell, Georg ; Grossi, Paola ; Hansen, Ayoe B. ; Miranda, Ana Isabel ; Nopmongcol, Uarporn ; Prank, Marje ; Sartelet, Karine N. ; Schaap, Martijn ; Silver, Jeremy D. ; Sokhi, Ranjeet S. ; Vira, Julius ; Werhahn, Johannes ; Wolke, Ralf ; Yarwood, Greg ; Zhang, Junhua ; Rao, S. Trivikrama ; Galmarini, Stefano</creatorcontrib><description>Ten state-of-the-science regional air quality (AQ) modeling systems have been applied to continental-scale domains in North America and Europe for full-year simulations of 2006 in the context of Air Quality Model Evaluation International Initiative (AQMEII), whose main goals are model inter-comparison and evaluation. Standardised modeling outputs from each group have been shared on the web-distributed ENSEMBLE system, which allows statistical and ensemble analyses to be performed. In this study, the one-year model simulations are inter-compared and evaluated with a large set of observations for ground-level particulate matter (PM10 and PM2.5) and its chemical components. Modeled concentrations of gaseous PM precursors, SO2 and NO2, have also been evaluated against observational data for both continents. Furthermore, modeled deposition (dry and wet) and emissions of several species relevant to PM are also inter-compared. The unprecedented scale of the exercise (two continents, one full year, fifteen modeling groups) allows for a detailed description of AQ model skill and uncertainty with respect to PM. Analyses of PM10 yearly time series and mean diurnal cycle show a large underestimation throughout the year for the AQ models included in AQMEII. The possible causes of PM bias, including errors in the emissions and meteorological inputs (e.g., wind speed and precipitation), and the calculated deposition are investigated. Further analysis of the coarse PM components, PM2.5 and its major components (SO4, NH4, NO3, elemental carbon), have also been performed, and the model performance for each component evaluated against measurements. Finally, the ability of the models to capture high PM concentrations has been evaluated by examining two separate PM2.5 episodes in Europe and North America. A large variability among models in predicting emissions, deposition, and concentration of PM and its precursors during the episodes has been found. Major challenges still remain with regards to identifying and eliminating the sources of PM bias in the models. Although PM2.5 was found to be much better estimated by the models than PM10, no model was found to consistently match the observations for all locations throughout the entire year.</description><identifier>ISSN: 1352-2310</identifier><identifier>ISSN: 0004-6981</identifier><identifier>EISSN: 1873-2844</identifier><identifier>DOI: 10.1016/j.atmosenv.2012.02.045</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Air quality ; Americas ; AQMEII ; Atmospheric and Oceanic Physics ; atmospheric chemistry ; Bias ; carbon ; Computer simulation ; Continents ; Deposition ; emissions ; Environmental Sciences ; Mathematical models ; Model evaluation ; model validation ; nitrogen dioxide ; Particulate matter ; particulates ; Physics ; PM2.5 speciation ; Precursors ; prediction ; Regional air quality model ; simulation models ; sulfur dioxide ; time series analysis ; uncertainty ; wind speed</subject><ispartof>Atmospheric environment, 2012-06, Vol.53, p.75-92</ispartof><rights>2012 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-f92e60c7783743cecb7a5bdea962c8ddeeec605e9ad6a8ab5220eaf5306ab613</citedby><cites>FETCH-LOGICAL-c480t-f92e60c7783743cecb7a5bdea962c8ddeeec605e9ad6a8ab5220eaf5306ab613</cites><orcidid>0000-0002-1049-8063 ; 0000-0003-2062-4681 ; 0000-0002-6333-1101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1352231012001604$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://ineris.hal.science/ineris-00963371$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Solazzo, Efisio</creatorcontrib><creatorcontrib>Bianconi, Roberto</creatorcontrib><creatorcontrib>Pirovano, Guido</creatorcontrib><creatorcontrib>Matthias, Volker</creatorcontrib><creatorcontrib>Vautard, Robert</creatorcontrib><creatorcontrib>Moran, Michael D.</creatorcontrib><creatorcontrib>Wyat Appel, K.</creatorcontrib><creatorcontrib>Bessagnet, Bertrand</creatorcontrib><creatorcontrib>Brandt, Jørgen</creatorcontrib><creatorcontrib>Christensen, Jesper H.</creatorcontrib><creatorcontrib>Chemel, Charles</creatorcontrib><creatorcontrib>Coll, Isabelle</creatorcontrib><creatorcontrib>Ferreira, Joana</creatorcontrib><creatorcontrib>Forkel, Renate</creatorcontrib><creatorcontrib>Francis, Xavier V.</creatorcontrib><creatorcontrib>Grell, Georg</creatorcontrib><creatorcontrib>Grossi, Paola</creatorcontrib><creatorcontrib>Hansen, Ayoe B.</creatorcontrib><creatorcontrib>Miranda, Ana Isabel</creatorcontrib><creatorcontrib>Nopmongcol, Uarporn</creatorcontrib><creatorcontrib>Prank, Marje</creatorcontrib><creatorcontrib>Sartelet, Karine N.</creatorcontrib><creatorcontrib>Schaap, Martijn</creatorcontrib><creatorcontrib>Silver, Jeremy D.</creatorcontrib><creatorcontrib>Sokhi, Ranjeet S.</creatorcontrib><creatorcontrib>Vira, Julius</creatorcontrib><creatorcontrib>Werhahn, Johannes</creatorcontrib><creatorcontrib>Wolke, Ralf</creatorcontrib><creatorcontrib>Yarwood, Greg</creatorcontrib><creatorcontrib>Zhang, Junhua</creatorcontrib><creatorcontrib>Rao, S. Trivikrama</creatorcontrib><creatorcontrib>Galmarini, Stefano</creatorcontrib><title>Operational model evaluation for particulate matter in Europe and North America in the context of AQMEII</title><title>Atmospheric environment</title><description>Ten state-of-the-science regional air quality (AQ) modeling systems have been applied to continental-scale domains in North America and Europe for full-year simulations of 2006 in the context of Air Quality Model Evaluation International Initiative (AQMEII), whose main goals are model inter-comparison and evaluation. Standardised modeling outputs from each group have been shared on the web-distributed ENSEMBLE system, which allows statistical and ensemble analyses to be performed. In this study, the one-year model simulations are inter-compared and evaluated with a large set of observations for ground-level particulate matter (PM10 and PM2.5) and its chemical components. Modeled concentrations of gaseous PM precursors, SO2 and NO2, have also been evaluated against observational data for both continents. Furthermore, modeled deposition (dry and wet) and emissions of several species relevant to PM are also inter-compared. The unprecedented scale of the exercise (two continents, one full year, fifteen modeling groups) allows for a detailed description of AQ model skill and uncertainty with respect to PM. Analyses of PM10 yearly time series and mean diurnal cycle show a large underestimation throughout the year for the AQ models included in AQMEII. The possible causes of PM bias, including errors in the emissions and meteorological inputs (e.g., wind speed and precipitation), and the calculated deposition are investigated. Further analysis of the coarse PM components, PM2.5 and its major components (SO4, NH4, NO3, elemental carbon), have also been performed, and the model performance for each component evaluated against measurements. Finally, the ability of the models to capture high PM concentrations has been evaluated by examining two separate PM2.5 episodes in Europe and North America. A large variability among models in predicting emissions, deposition, and concentration of PM and its precursors during the episodes has been found. Major challenges still remain with regards to identifying and eliminating the sources of PM bias in the models. Although PM2.5 was found to be much better estimated by the models than PM10, no model was found to consistently match the observations for all locations throughout the entire year.</description><subject>Air quality</subject><subject>Americas</subject><subject>AQMEII</subject><subject>Atmospheric and Oceanic Physics</subject><subject>atmospheric chemistry</subject><subject>Bias</subject><subject>carbon</subject><subject>Computer simulation</subject><subject>Continents</subject><subject>Deposition</subject><subject>emissions</subject><subject>Environmental Sciences</subject><subject>Mathematical models</subject><subject>Model evaluation</subject><subject>model validation</subject><subject>nitrogen dioxide</subject><subject>Particulate matter</subject><subject>particulates</subject><subject>Physics</subject><subject>PM2.5 speciation</subject><subject>Precursors</subject><subject>prediction</subject><subject>Regional air quality model</subject><subject>simulation models</subject><subject>sulfur dioxide</subject><subject>time series analysis</subject><subject>uncertainty</subject><subject>wind speed</subject><issn>1352-2310</issn><issn>0004-6981</issn><issn>1873-2844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkcGO1DAMhisEEsvCK0COHOjgJG3a3hitBnakgRViOUee1GUyapuSpKPl7Um3wBXJkq3k82_rd5a95rDhwNX78wbj4AKNl40ALjaQoiifZFe8rmQu6qJ4mmpZilxIDs-zFyGcAUBWTXWVne4m8hitG7Fng2upZ3TBfn58Yp3zbEIfrZl7jMQGjJE8syPbzd5NxHBs2Rfn44ltB_LW4PIXT8SMGyM9ROY6tv36ebffv8yeddgHevUnX2f3H3f3N7f54e7T_mZ7yE1RQ8y7RpACU1W1rAppyBwrLI8tYaOEqduWiIyCkhpsFdZ4LIUAwq6UoPCouLzO3q2yJ-z15O2A_pd2aPXt9qDtmHYMGqBRUlb8suBvV3zy7udMIerBBkN9jyO5OehkcLKpKGuRULWixrsQPHX_5DksnNJn_fcQejmEhhRFmRrfrI0dOo0_lg2-f0tACcCbWj5Kf1gJSsZcLHkdjKXRUGs9mahbZ_835Dcoi59w</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Solazzo, Efisio</creator><creator>Bianconi, Roberto</creator><creator>Pirovano, Guido</creator><creator>Matthias, Volker</creator><creator>Vautard, Robert</creator><creator>Moran, Michael D.</creator><creator>Wyat Appel, K.</creator><creator>Bessagnet, Bertrand</creator><creator>Brandt, Jørgen</creator><creator>Christensen, Jesper H.</creator><creator>Chemel, Charles</creator><creator>Coll, Isabelle</creator><creator>Ferreira, Joana</creator><creator>Forkel, Renate</creator><creator>Francis, Xavier V.</creator><creator>Grell, Georg</creator><creator>Grossi, Paola</creator><creator>Hansen, Ayoe B.</creator><creator>Miranda, Ana Isabel</creator><creator>Nopmongcol, Uarporn</creator><creator>Prank, Marje</creator><creator>Sartelet, Karine N.</creator><creator>Schaap, Martijn</creator><creator>Silver, Jeremy D.</creator><creator>Sokhi, Ranjeet S.</creator><creator>Vira, Julius</creator><creator>Werhahn, Johannes</creator><creator>Wolke, Ralf</creator><creator>Yarwood, Greg</creator><creator>Zhang, Junhua</creator><creator>Rao, S. Trivikrama</creator><creator>Galmarini, Stefano</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1049-8063</orcidid><orcidid>https://orcid.org/0000-0003-2062-4681</orcidid><orcidid>https://orcid.org/0000-0002-6333-1101</orcidid></search><sort><creationdate>20120601</creationdate><title>Operational model evaluation for particulate matter in Europe and North America in the context of AQMEII</title><author>Solazzo, Efisio ; Bianconi, Roberto ; Pirovano, Guido ; Matthias, Volker ; Vautard, Robert ; Moran, Michael D. ; Wyat Appel, K. ; Bessagnet, Bertrand ; Brandt, Jørgen ; Christensen, Jesper H. ; Chemel, Charles ; Coll, Isabelle ; Ferreira, Joana ; Forkel, Renate ; Francis, Xavier V. ; Grell, Georg ; Grossi, Paola ; Hansen, Ayoe B. ; Miranda, Ana Isabel ; Nopmongcol, Uarporn ; Prank, Marje ; Sartelet, Karine N. ; Schaap, Martijn ; Silver, Jeremy D. ; Sokhi, Ranjeet S. ; Vira, Julius ; Werhahn, Johannes ; Wolke, Ralf ; Yarwood, Greg ; Zhang, Junhua ; Rao, S. Trivikrama ; Galmarini, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-f92e60c7783743cecb7a5bdea962c8ddeeec605e9ad6a8ab5220eaf5306ab613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Air quality</topic><topic>Americas</topic><topic>AQMEII</topic><topic>Atmospheric and Oceanic Physics</topic><topic>atmospheric chemistry</topic><topic>Bias</topic><topic>carbon</topic><topic>Computer simulation</topic><topic>Continents</topic><topic>Deposition</topic><topic>emissions</topic><topic>Environmental Sciences</topic><topic>Mathematical models</topic><topic>Model evaluation</topic><topic>model validation</topic><topic>nitrogen dioxide</topic><topic>Particulate matter</topic><topic>particulates</topic><topic>Physics</topic><topic>PM2.5 speciation</topic><topic>Precursors</topic><topic>prediction</topic><topic>Regional air quality model</topic><topic>simulation models</topic><topic>sulfur dioxide</topic><topic>time series analysis</topic><topic>uncertainty</topic><topic>wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solazzo, Efisio</creatorcontrib><creatorcontrib>Bianconi, Roberto</creatorcontrib><creatorcontrib>Pirovano, Guido</creatorcontrib><creatorcontrib>Matthias, Volker</creatorcontrib><creatorcontrib>Vautard, Robert</creatorcontrib><creatorcontrib>Moran, Michael D.</creatorcontrib><creatorcontrib>Wyat Appel, K.</creatorcontrib><creatorcontrib>Bessagnet, Bertrand</creatorcontrib><creatorcontrib>Brandt, Jørgen</creatorcontrib><creatorcontrib>Christensen, Jesper H.</creatorcontrib><creatorcontrib>Chemel, Charles</creatorcontrib><creatorcontrib>Coll, Isabelle</creatorcontrib><creatorcontrib>Ferreira, Joana</creatorcontrib><creatorcontrib>Forkel, Renate</creatorcontrib><creatorcontrib>Francis, Xavier V.</creatorcontrib><creatorcontrib>Grell, Georg</creatorcontrib><creatorcontrib>Grossi, Paola</creatorcontrib><creatorcontrib>Hansen, Ayoe B.</creatorcontrib><creatorcontrib>Miranda, Ana Isabel</creatorcontrib><creatorcontrib>Nopmongcol, Uarporn</creatorcontrib><creatorcontrib>Prank, Marje</creatorcontrib><creatorcontrib>Sartelet, Karine N.</creatorcontrib><creatorcontrib>Schaap, Martijn</creatorcontrib><creatorcontrib>Silver, Jeremy D.</creatorcontrib><creatorcontrib>Sokhi, Ranjeet S.</creatorcontrib><creatorcontrib>Vira, Julius</creatorcontrib><creatorcontrib>Werhahn, Johannes</creatorcontrib><creatorcontrib>Wolke, Ralf</creatorcontrib><creatorcontrib>Yarwood, Greg</creatorcontrib><creatorcontrib>Zhang, Junhua</creatorcontrib><creatorcontrib>Rao, S. Trivikrama</creatorcontrib><creatorcontrib>Galmarini, Stefano</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Atmospheric environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solazzo, Efisio</au><au>Bianconi, Roberto</au><au>Pirovano, Guido</au><au>Matthias, Volker</au><au>Vautard, Robert</au><au>Moran, Michael D.</au><au>Wyat Appel, K.</au><au>Bessagnet, Bertrand</au><au>Brandt, Jørgen</au><au>Christensen, Jesper H.</au><au>Chemel, Charles</au><au>Coll, Isabelle</au><au>Ferreira, Joana</au><au>Forkel, Renate</au><au>Francis, Xavier V.</au><au>Grell, Georg</au><au>Grossi, Paola</au><au>Hansen, Ayoe B.</au><au>Miranda, Ana Isabel</au><au>Nopmongcol, Uarporn</au><au>Prank, Marje</au><au>Sartelet, Karine N.</au><au>Schaap, Martijn</au><au>Silver, Jeremy D.</au><au>Sokhi, Ranjeet S.</au><au>Vira, Julius</au><au>Werhahn, Johannes</au><au>Wolke, Ralf</au><au>Yarwood, Greg</au><au>Zhang, Junhua</au><au>Rao, S. Trivikrama</au><au>Galmarini, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Operational model evaluation for particulate matter in Europe and North America in the context of AQMEII</atitle><jtitle>Atmospheric environment</jtitle><date>2012-06-01</date><risdate>2012</risdate><volume>53</volume><spage>75</spage><epage>92</epage><pages>75-92</pages><issn>1352-2310</issn><issn>0004-6981</issn><eissn>1873-2844</eissn><abstract>Ten state-of-the-science regional air quality (AQ) modeling systems have been applied to continental-scale domains in North America and Europe for full-year simulations of 2006 in the context of Air Quality Model Evaluation International Initiative (AQMEII), whose main goals are model inter-comparison and evaluation. Standardised modeling outputs from each group have been shared on the web-distributed ENSEMBLE system, which allows statistical and ensemble analyses to be performed. In this study, the one-year model simulations are inter-compared and evaluated with a large set of observations for ground-level particulate matter (PM10 and PM2.5) and its chemical components. Modeled concentrations of gaseous PM precursors, SO2 and NO2, have also been evaluated against observational data for both continents. Furthermore, modeled deposition (dry and wet) and emissions of several species relevant to PM are also inter-compared. The unprecedented scale of the exercise (two continents, one full year, fifteen modeling groups) allows for a detailed description of AQ model skill and uncertainty with respect to PM. Analyses of PM10 yearly time series and mean diurnal cycle show a large underestimation throughout the year for the AQ models included in AQMEII. The possible causes of PM bias, including errors in the emissions and meteorological inputs (e.g., wind speed and precipitation), and the calculated deposition are investigated. Further analysis of the coarse PM components, PM2.5 and its major components (SO4, NH4, NO3, elemental carbon), have also been performed, and the model performance for each component evaluated against measurements. Finally, the ability of the models to capture high PM concentrations has been evaluated by examining two separate PM2.5 episodes in Europe and North America. A large variability among models in predicting emissions, deposition, and concentration of PM and its precursors during the episodes has been found. Major challenges still remain with regards to identifying and eliminating the sources of PM bias in the models. Although PM2.5 was found to be much better estimated by the models than PM10, no model was found to consistently match the observations for all locations throughout the entire year.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.atmosenv.2012.02.045</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-1049-8063</orcidid><orcidid>https://orcid.org/0000-0003-2062-4681</orcidid><orcidid>https://orcid.org/0000-0002-6333-1101</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1352-2310
ispartof Atmospheric environment, 2012-06, Vol.53, p.75-92
issn 1352-2310
0004-6981
1873-2844
language eng
recordid cdi_proquest_miscellaneous_1017974582
source Elsevier ScienceDirect Journals
subjects Air quality
Americas
AQMEII
Atmospheric and Oceanic Physics
atmospheric chemistry
Bias
carbon
Computer simulation
Continents
Deposition
emissions
Environmental Sciences
Mathematical models
Model evaluation
model validation
nitrogen dioxide
Particulate matter
particulates
Physics
PM2.5 speciation
Precursors
prediction
Regional air quality model
simulation models
sulfur dioxide
time series analysis
uncertainty
wind speed
title Operational model evaluation for particulate matter in Europe and North America in the context of AQMEII
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A53%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Operational%20model%20evaluation%20for%20particulate%20matter%20in%20Europe%20and%20North%20America%20in%20the%20context%20of%20AQMEII&rft.jtitle=Atmospheric%20environment&rft.au=Solazzo,%20Efisio&rft.date=2012-06-01&rft.volume=53&rft.spage=75&rft.epage=92&rft.pages=75-92&rft.issn=1352-2310&rft.eissn=1873-2844&rft_id=info:doi/10.1016/j.atmosenv.2012.02.045&rft_dat=%3Cproquest_hal_p%3E1017974582%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1017974582&rft_id=info:pmid/&rft_els_id=S1352231012001604&rfr_iscdi=true