Numerical simulations of polymer pyrolysis rate: Effect of property variations
The mass loss rate (MLR) of poly(methyl methacrylate) (PMMA) exposed to known radiant fluxes is simulated with two recently developed numerical codes, the National Institute of Standards and Technology (NIST) Fire Dynamics Simulator (FDS) and the Federal Aviation Administration (FAA) ThermaKin. The...
Gespeichert in:
Veröffentlicht in: | Fire and materials 2011-11, Vol.35 (7), p.463-480 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 480 |
---|---|
container_issue | 7 |
container_start_page | 463 |
container_title | Fire and materials |
container_volume | 35 |
creator | Linteris, G. T. |
description | The mass loss rate (MLR) of poly(methyl methacrylate) (PMMA) exposed to known radiant fluxes is simulated with two recently developed numerical codes, the National Institute of Standards and Technology (NIST) Fire Dynamics Simulator (FDS) and the Federal Aviation Administration (FAA) ThermaKin. The influence of various material properties (thickness, thermal conductivity, specific heat, absorption of infrared radiation, heat of reaction) on mass loss history is assessed, via their effect on the ignition time, average MLR, peak MLR, and time to peak. The two codes predict the influence of material parameters on the MLR in the order of decreasing importance: heat of reaction, thickness, specific heat, absorption coefficient, thermal conductivity, and activation energy of the polymer decomposition. Changes in the material properties also influence the MLR curves by switching the sample from thermally thick to thermally thin. The two numerical codes are generally in very good agreement for their predictions of the MLR vs time curves, except when in‐depth absorption of radiation was important. Copyright © 2010 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/fam.1066 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1017968887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1017968887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4326-6f6a4e60152b8c6509adc06582af4574c95c8e3912676dce5c2c2a6dc4d8a4833</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEqUg8RNyQeIS2PgVh1up2oJUyoGXxMUyri0ZkqbYCZB_j0sjOHHakfbb0c4gdJzBWQaAz62qouB8Bw0yKIo0g0zsogEQECkwyPbRQQivACBEzgdosWgr451WZRJc1ZaqcfUqJLVN1nXZxVWy7nxUwYXEq8ZcJBNrjW5-CF-vjW-65EN5tz08RHtWlcEc9XOIHqaT-_FVOr-dXY9H81RTgnnKLVfUcMgYfhGaMyjUUgNnAitLWU51wbQwpMgwz_lSG6axxioquhSKCkKG6HTrG394b01oZOWCNmWpVqZug4yp84KLmPEP1b4OwRsr195VyncRkpvKZKxMbiqL6EnvqkJsxHq10i788phyIBRD5NIt9-lK0_3rJ6ejm963511ozNcvr_yb5DnJmXxazCR_Lgi7fLyTlHwDU0aI7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1017968887</pqid></control><display><type>article</type><title>Numerical simulations of polymer pyrolysis rate: Effect of property variations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Linteris, G. T.</creator><creatorcontrib>Linteris, G. T.</creatorcontrib><description>The mass loss rate (MLR) of poly(methyl methacrylate) (PMMA) exposed to known radiant fluxes is simulated with two recently developed numerical codes, the National Institute of Standards and Technology (NIST) Fire Dynamics Simulator (FDS) and the Federal Aviation Administration (FAA) ThermaKin. The influence of various material properties (thickness, thermal conductivity, specific heat, absorption of infrared radiation, heat of reaction) on mass loss history is assessed, via their effect on the ignition time, average MLR, peak MLR, and time to peak. The two codes predict the influence of material parameters on the MLR in the order of decreasing importance: heat of reaction, thickness, specific heat, absorption coefficient, thermal conductivity, and activation energy of the polymer decomposition. Changes in the material properties also influence the MLR curves by switching the sample from thermally thick to thermally thin. The two numerical codes are generally in very good agreement for their predictions of the MLR vs time curves, except when in‐depth absorption of radiation was important. Copyright © 2010 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0308-0501</identifier><identifier>ISSN: 1099-1018</identifier><identifier>EISSN: 1099-1018</identifier><identifier>DOI: 10.1002/fam.1066</identifier><identifier>CODEN: FMATDV</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Applied sciences ; Building technical equipments ; Buildings ; Buildings. Public works ; Computation methods. Tables. Charts ; Exact sciences and technology ; Fire behavior of materials and structures ; fire modeling ; Fire protection ; fire retardant additives ; fire simulation ; heat release rate ; material flammability ; Materials ; Plastics ; polymer burning rate ; polymer flammability ; Structural analysis. Stresses</subject><ispartof>Fire and materials, 2011-11, Vol.35 (7), p.463-480</ispartof><rights>Copyright © 2010 John Wiley & Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4326-6f6a4e60152b8c6509adc06582af4574c95c8e3912676dce5c2c2a6dc4d8a4833</citedby><cites>FETCH-LOGICAL-c4326-6f6a4e60152b8c6509adc06582af4574c95c8e3912676dce5c2c2a6dc4d8a4833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffam.1066$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffam.1066$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24603420$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Linteris, G. T.</creatorcontrib><title>Numerical simulations of polymer pyrolysis rate: Effect of property variations</title><title>Fire and materials</title><addtitle>Fire Mater</addtitle><description>The mass loss rate (MLR) of poly(methyl methacrylate) (PMMA) exposed to known radiant fluxes is simulated with two recently developed numerical codes, the National Institute of Standards and Technology (NIST) Fire Dynamics Simulator (FDS) and the Federal Aviation Administration (FAA) ThermaKin. The influence of various material properties (thickness, thermal conductivity, specific heat, absorption of infrared radiation, heat of reaction) on mass loss history is assessed, via their effect on the ignition time, average MLR, peak MLR, and time to peak. The two codes predict the influence of material parameters on the MLR in the order of decreasing importance: heat of reaction, thickness, specific heat, absorption coefficient, thermal conductivity, and activation energy of the polymer decomposition. Changes in the material properties also influence the MLR curves by switching the sample from thermally thick to thermally thin. The two numerical codes are generally in very good agreement for their predictions of the MLR vs time curves, except when in‐depth absorption of radiation was important. Copyright © 2010 John Wiley & Sons, Ltd.</description><subject>Applied sciences</subject><subject>Building technical equipments</subject><subject>Buildings</subject><subject>Buildings. Public works</subject><subject>Computation methods. Tables. Charts</subject><subject>Exact sciences and technology</subject><subject>Fire behavior of materials and structures</subject><subject>fire modeling</subject><subject>Fire protection</subject><subject>fire retardant additives</subject><subject>fire simulation</subject><subject>heat release rate</subject><subject>material flammability</subject><subject>Materials</subject><subject>Plastics</subject><subject>polymer burning rate</subject><subject>polymer flammability</subject><subject>Structural analysis. Stresses</subject><issn>0308-0501</issn><issn>1099-1018</issn><issn>1099-1018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhC0EEqUg8RNyQeIS2PgVh1up2oJUyoGXxMUyri0ZkqbYCZB_j0sjOHHakfbb0c4gdJzBWQaAz62qouB8Bw0yKIo0g0zsogEQECkwyPbRQQivACBEzgdosWgr451WZRJc1ZaqcfUqJLVN1nXZxVWy7nxUwYXEq8ZcJBNrjW5-CF-vjW-65EN5tz08RHtWlcEc9XOIHqaT-_FVOr-dXY9H81RTgnnKLVfUcMgYfhGaMyjUUgNnAitLWU51wbQwpMgwz_lSG6axxioquhSKCkKG6HTrG394b01oZOWCNmWpVqZug4yp84KLmPEP1b4OwRsr195VyncRkpvKZKxMbiqL6EnvqkJsxHq10i788phyIBRD5NIt9-lK0_3rJ6ejm963511ozNcvr_yb5DnJmXxazCR_Lgi7fLyTlHwDU0aI7w</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Linteris, G. T.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T2</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>201111</creationdate><title>Numerical simulations of polymer pyrolysis rate: Effect of property variations</title><author>Linteris, G. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4326-6f6a4e60152b8c6509adc06582af4574c95c8e3912676dce5c2c2a6dc4d8a4833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Building technical equipments</topic><topic>Buildings</topic><topic>Buildings. Public works</topic><topic>Computation methods. Tables. Charts</topic><topic>Exact sciences and technology</topic><topic>Fire behavior of materials and structures</topic><topic>fire modeling</topic><topic>Fire protection</topic><topic>fire retardant additives</topic><topic>fire simulation</topic><topic>heat release rate</topic><topic>material flammability</topic><topic>Materials</topic><topic>Plastics</topic><topic>polymer burning rate</topic><topic>polymer flammability</topic><topic>Structural analysis. Stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Linteris, G. T.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Fire and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Linteris, G. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulations of polymer pyrolysis rate: Effect of property variations</atitle><jtitle>Fire and materials</jtitle><addtitle>Fire Mater</addtitle><date>2011-11</date><risdate>2011</risdate><volume>35</volume><issue>7</issue><spage>463</spage><epage>480</epage><pages>463-480</pages><issn>0308-0501</issn><issn>1099-1018</issn><eissn>1099-1018</eissn><coden>FMATDV</coden><abstract>The mass loss rate (MLR) of poly(methyl methacrylate) (PMMA) exposed to known radiant fluxes is simulated with two recently developed numerical codes, the National Institute of Standards and Technology (NIST) Fire Dynamics Simulator (FDS) and the Federal Aviation Administration (FAA) ThermaKin. The influence of various material properties (thickness, thermal conductivity, specific heat, absorption of infrared radiation, heat of reaction) on mass loss history is assessed, via their effect on the ignition time, average MLR, peak MLR, and time to peak. The two codes predict the influence of material parameters on the MLR in the order of decreasing importance: heat of reaction, thickness, specific heat, absorption coefficient, thermal conductivity, and activation energy of the polymer decomposition. Changes in the material properties also influence the MLR curves by switching the sample from thermally thick to thermally thin. The two numerical codes are generally in very good agreement for their predictions of the MLR vs time curves, except when in‐depth absorption of radiation was important. Copyright © 2010 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/fam.1066</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0308-0501 |
ispartof | Fire and materials, 2011-11, Vol.35 (7), p.463-480 |
issn | 0308-0501 1099-1018 1099-1018 |
language | eng |
recordid | cdi_proquest_miscellaneous_1017968887 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences Building technical equipments Buildings Buildings. Public works Computation methods. Tables. Charts Exact sciences and technology Fire behavior of materials and structures fire modeling Fire protection fire retardant additives fire simulation heat release rate material flammability Materials Plastics polymer burning rate polymer flammability Structural analysis. Stresses |
title | Numerical simulations of polymer pyrolysis rate: Effect of property variations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A40%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulations%20of%20polymer%20pyrolysis%20rate:%20Effect%20of%20property%20variations&rft.jtitle=Fire%20and%20materials&rft.au=Linteris,%20G.%20T.&rft.date=2011-11&rft.volume=35&rft.issue=7&rft.spage=463&rft.epage=480&rft.pages=463-480&rft.issn=0308-0501&rft.eissn=1099-1018&rft.coden=FMATDV&rft_id=info:doi/10.1002/fam.1066&rft_dat=%3Cproquest_cross%3E1017968887%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1017968887&rft_id=info:pmid/&rfr_iscdi=true |