Numerical simulations of polymer pyrolysis rate: Effect of property variations

The mass loss rate (MLR) of poly(methyl methacrylate) (PMMA) exposed to known radiant fluxes is simulated with two recently developed numerical codes, the National Institute of Standards and Technology (NIST) Fire Dynamics Simulator (FDS) and the Federal Aviation Administration (FAA) ThermaKin. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fire and materials 2011-11, Vol.35 (7), p.463-480
1. Verfasser: Linteris, G. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 480
container_issue 7
container_start_page 463
container_title Fire and materials
container_volume 35
creator Linteris, G. T.
description The mass loss rate (MLR) of poly(methyl methacrylate) (PMMA) exposed to known radiant fluxes is simulated with two recently developed numerical codes, the National Institute of Standards and Technology (NIST) Fire Dynamics Simulator (FDS) and the Federal Aviation Administration (FAA) ThermaKin. The influence of various material properties (thickness, thermal conductivity, specific heat, absorption of infrared radiation, heat of reaction) on mass loss history is assessed, via their effect on the ignition time, average MLR, peak MLR, and time to peak. The two codes predict the influence of material parameters on the MLR in the order of decreasing importance: heat of reaction, thickness, specific heat, absorption coefficient, thermal conductivity, and activation energy of the polymer decomposition. Changes in the material properties also influence the MLR curves by switching the sample from thermally thick to thermally thin. The two numerical codes are generally in very good agreement for their predictions of the MLR vs time curves, except when in‐depth absorption of radiation was important. Copyright © 2010 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/fam.1066
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1017968887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1017968887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4326-6f6a4e60152b8c6509adc06582af4574c95c8e3912676dce5c2c2a6dc4d8a4833</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEqUg8RNyQeIS2PgVh1up2oJUyoGXxMUyri0ZkqbYCZB_j0sjOHHakfbb0c4gdJzBWQaAz62qouB8Bw0yKIo0g0zsogEQECkwyPbRQQivACBEzgdosWgr451WZRJc1ZaqcfUqJLVN1nXZxVWy7nxUwYXEq8ZcJBNrjW5-CF-vjW-65EN5tz08RHtWlcEc9XOIHqaT-_FVOr-dXY9H81RTgnnKLVfUcMgYfhGaMyjUUgNnAitLWU51wbQwpMgwz_lSG6axxioquhSKCkKG6HTrG394b01oZOWCNmWpVqZug4yp84KLmPEP1b4OwRsr195VyncRkpvKZKxMbiqL6EnvqkJsxHq10i788phyIBRD5NIt9-lK0_3rJ6ejm963511ozNcvr_yb5DnJmXxazCR_Lgi7fLyTlHwDU0aI7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1017968887</pqid></control><display><type>article</type><title>Numerical simulations of polymer pyrolysis rate: Effect of property variations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Linteris, G. T.</creator><creatorcontrib>Linteris, G. T.</creatorcontrib><description>The mass loss rate (MLR) of poly(methyl methacrylate) (PMMA) exposed to known radiant fluxes is simulated with two recently developed numerical codes, the National Institute of Standards and Technology (NIST) Fire Dynamics Simulator (FDS) and the Federal Aviation Administration (FAA) ThermaKin. The influence of various material properties (thickness, thermal conductivity, specific heat, absorption of infrared radiation, heat of reaction) on mass loss history is assessed, via their effect on the ignition time, average MLR, peak MLR, and time to peak. The two codes predict the influence of material parameters on the MLR in the order of decreasing importance: heat of reaction, thickness, specific heat, absorption coefficient, thermal conductivity, and activation energy of the polymer decomposition. Changes in the material properties also influence the MLR curves by switching the sample from thermally thick to thermally thin. The two numerical codes are generally in very good agreement for their predictions of the MLR vs time curves, except when in‐depth absorption of radiation was important. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0308-0501</identifier><identifier>ISSN: 1099-1018</identifier><identifier>EISSN: 1099-1018</identifier><identifier>DOI: 10.1002/fam.1066</identifier><identifier>CODEN: FMATDV</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Applied sciences ; Building technical equipments ; Buildings ; Buildings. Public works ; Computation methods. Tables. Charts ; Exact sciences and technology ; Fire behavior of materials and structures ; fire modeling ; Fire protection ; fire retardant additives ; fire simulation ; heat release rate ; material flammability ; Materials ; Plastics ; polymer burning rate ; polymer flammability ; Structural analysis. Stresses</subject><ispartof>Fire and materials, 2011-11, Vol.35 (7), p.463-480</ispartof><rights>Copyright © 2010 John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4326-6f6a4e60152b8c6509adc06582af4574c95c8e3912676dce5c2c2a6dc4d8a4833</citedby><cites>FETCH-LOGICAL-c4326-6f6a4e60152b8c6509adc06582af4574c95c8e3912676dce5c2c2a6dc4d8a4833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffam.1066$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffam.1066$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24603420$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Linteris, G. T.</creatorcontrib><title>Numerical simulations of polymer pyrolysis rate: Effect of property variations</title><title>Fire and materials</title><addtitle>Fire Mater</addtitle><description>The mass loss rate (MLR) of poly(methyl methacrylate) (PMMA) exposed to known radiant fluxes is simulated with two recently developed numerical codes, the National Institute of Standards and Technology (NIST) Fire Dynamics Simulator (FDS) and the Federal Aviation Administration (FAA) ThermaKin. The influence of various material properties (thickness, thermal conductivity, specific heat, absorption of infrared radiation, heat of reaction) on mass loss history is assessed, via their effect on the ignition time, average MLR, peak MLR, and time to peak. The two codes predict the influence of material parameters on the MLR in the order of decreasing importance: heat of reaction, thickness, specific heat, absorption coefficient, thermal conductivity, and activation energy of the polymer decomposition. Changes in the material properties also influence the MLR curves by switching the sample from thermally thick to thermally thin. The two numerical codes are generally in very good agreement for their predictions of the MLR vs time curves, except when in‐depth absorption of radiation was important. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><subject>Applied sciences</subject><subject>Building technical equipments</subject><subject>Buildings</subject><subject>Buildings. Public works</subject><subject>Computation methods. Tables. Charts</subject><subject>Exact sciences and technology</subject><subject>Fire behavior of materials and structures</subject><subject>fire modeling</subject><subject>Fire protection</subject><subject>fire retardant additives</subject><subject>fire simulation</subject><subject>heat release rate</subject><subject>material flammability</subject><subject>Materials</subject><subject>Plastics</subject><subject>polymer burning rate</subject><subject>polymer flammability</subject><subject>Structural analysis. Stresses</subject><issn>0308-0501</issn><issn>1099-1018</issn><issn>1099-1018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhC0EEqUg8RNyQeIS2PgVh1up2oJUyoGXxMUyri0ZkqbYCZB_j0sjOHHakfbb0c4gdJzBWQaAz62qouB8Bw0yKIo0g0zsogEQECkwyPbRQQivACBEzgdosWgr451WZRJc1ZaqcfUqJLVN1nXZxVWy7nxUwYXEq8ZcJBNrjW5-CF-vjW-65EN5tz08RHtWlcEc9XOIHqaT-_FVOr-dXY9H81RTgnnKLVfUcMgYfhGaMyjUUgNnAitLWU51wbQwpMgwz_lSG6axxioquhSKCkKG6HTrG394b01oZOWCNmWpVqZug4yp84KLmPEP1b4OwRsr195VyncRkpvKZKxMbiqL6EnvqkJsxHq10i788phyIBRD5NIt9-lK0_3rJ6ejm963511ozNcvr_yb5DnJmXxazCR_Lgi7fLyTlHwDU0aI7w</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Linteris, G. T.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T2</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>201111</creationdate><title>Numerical simulations of polymer pyrolysis rate: Effect of property variations</title><author>Linteris, G. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4326-6f6a4e60152b8c6509adc06582af4574c95c8e3912676dce5c2c2a6dc4d8a4833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Building technical equipments</topic><topic>Buildings</topic><topic>Buildings. Public works</topic><topic>Computation methods. Tables. Charts</topic><topic>Exact sciences and technology</topic><topic>Fire behavior of materials and structures</topic><topic>fire modeling</topic><topic>Fire protection</topic><topic>fire retardant additives</topic><topic>fire simulation</topic><topic>heat release rate</topic><topic>material flammability</topic><topic>Materials</topic><topic>Plastics</topic><topic>polymer burning rate</topic><topic>polymer flammability</topic><topic>Structural analysis. Stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Linteris, G. T.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Fire and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Linteris, G. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulations of polymer pyrolysis rate: Effect of property variations</atitle><jtitle>Fire and materials</jtitle><addtitle>Fire Mater</addtitle><date>2011-11</date><risdate>2011</risdate><volume>35</volume><issue>7</issue><spage>463</spage><epage>480</epage><pages>463-480</pages><issn>0308-0501</issn><issn>1099-1018</issn><eissn>1099-1018</eissn><coden>FMATDV</coden><abstract>The mass loss rate (MLR) of poly(methyl methacrylate) (PMMA) exposed to known radiant fluxes is simulated with two recently developed numerical codes, the National Institute of Standards and Technology (NIST) Fire Dynamics Simulator (FDS) and the Federal Aviation Administration (FAA) ThermaKin. The influence of various material properties (thickness, thermal conductivity, specific heat, absorption of infrared radiation, heat of reaction) on mass loss history is assessed, via their effect on the ignition time, average MLR, peak MLR, and time to peak. The two codes predict the influence of material parameters on the MLR in the order of decreasing importance: heat of reaction, thickness, specific heat, absorption coefficient, thermal conductivity, and activation energy of the polymer decomposition. Changes in the material properties also influence the MLR curves by switching the sample from thermally thick to thermally thin. The two numerical codes are generally in very good agreement for their predictions of the MLR vs time curves, except when in‐depth absorption of radiation was important. Copyright © 2010 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/fam.1066</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0308-0501
ispartof Fire and materials, 2011-11, Vol.35 (7), p.463-480
issn 0308-0501
1099-1018
1099-1018
language eng
recordid cdi_proquest_miscellaneous_1017968887
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
Building technical equipments
Buildings
Buildings. Public works
Computation methods. Tables. Charts
Exact sciences and technology
Fire behavior of materials and structures
fire modeling
Fire protection
fire retardant additives
fire simulation
heat release rate
material flammability
Materials
Plastics
polymer burning rate
polymer flammability
Structural analysis. Stresses
title Numerical simulations of polymer pyrolysis rate: Effect of property variations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A40%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulations%20of%20polymer%20pyrolysis%20rate:%20Effect%20of%20property%20variations&rft.jtitle=Fire%20and%20materials&rft.au=Linteris,%20G.%20T.&rft.date=2011-11&rft.volume=35&rft.issue=7&rft.spage=463&rft.epage=480&rft.pages=463-480&rft.issn=0308-0501&rft.eissn=1099-1018&rft.coden=FMATDV&rft_id=info:doi/10.1002/fam.1066&rft_dat=%3Cproquest_cross%3E1017968887%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1017968887&rft_id=info:pmid/&rfr_iscdi=true