Positive Relationship between Aboveground Carbon Stocks and Structural Diversity in Spruce-Dominated Forest Stands in New Brunswick, Canada

Maintaining both the structure and functionality of forest ecosystems is a primary goal of forest management. In this study, relationships between structural diversity and aboveground stand carbon (C) stocks were examined in spruce-dominated forests in New Brunswick, Canada. Tree species, size, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forest science 2011-12, Vol.57 (6), p.506-515
Hauptverfasser: Wang, Weifeng, Lei, Xiangdong, Ma, Zhihai, Kneeshaw, Daniel D, Peng, Changhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Maintaining both the structure and functionality of forest ecosystems is a primary goal of forest management. In this study, relationships between structural diversity and aboveground stand carbon (C) stocks were examined in spruce-dominated forests in New Brunswick, Canada. Tree species, size, and height diversity indices as well as a combination of these diversity indices were used to correlate aboveground C stocks. Multiple linear regressions were subsequently used to quantify the relationships between these indices and aboveground C stocks, and partial correlation analysis was also adopted to remove the effects of other explanatory variables. Results show that stand structural diversity has a significant positive effect on aboveground C stocks even though the relationship is weak overall. Positive relationships observed between the diversity indices and aboveground C stocks support the hypothesis that increased structural diversity enhances aboveground C storage capacity. This occurs because complex forest structures allow for greater light infiltration and promote a more efficient resource use by trees, leading to an increase in biomass and C production. Mixed tolerant species composition and uneven-aged stand management in conjunction with selection or partial cutting to maintain high structural diversity is therefore recommended to preserve biodiversity and C stocks in spruce-dominated forests.
ISSN:0015-749X
1938-3738
DOI:10.1093/forestscience/57.6.506