RNF12 initiates X-chromosome inactivation by targeting REX1 for degradation

The pluripotency factor REX1 is a key target of RNF12 during X-chromosome inactivation; degradation of REX1 by RNF12 leads to relief of its inhibitory action on X-chromosome inactivation. X-chromosome inactivation by RNF12 In placental mammals, X-linked gene dosage compensation between XY males and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2012-05, Vol.485 (7398), p.386-390
Hauptverfasser: Gontan, Cristina, Achame, Eskeatnaf Mulugeta, Demmers, Jeroen, Barakat, Tahsin Stefan, Rentmeester, Eveline, van IJcken, Wilfred, Grootegoed, J. Anton, Gribnau, Joost
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 390
container_issue 7398
container_start_page 386
container_title Nature (London)
container_volume 485
creator Gontan, Cristina
Achame, Eskeatnaf Mulugeta
Demmers, Jeroen
Barakat, Tahsin Stefan
Rentmeester, Eveline
van IJcken, Wilfred
Grootegoed, J. Anton
Gribnau, Joost
description The pluripotency factor REX1 is a key target of RNF12 during X-chromosome inactivation; degradation of REX1 by RNF12 leads to relief of its inhibitory action on X-chromosome inactivation. X-chromosome inactivation by RNF12 In placental mammals, X-linked gene dosage compensation between XY males and XX females is achieved by random inactivation of one X chromosome in female somatic cells. The E3 ubiquitin ligase RNF12 is required for initiation of X-chromosome inactivation (XCI) in embryonic stem cells, but its downstream targets have been unclear. Here, Gribnau and colleagues demonstrate that the pluripotency factor REX1 is a key target of RNF12 during XCI. RNF12 degradation of REX1 leads to relief of its inhibitory action on XCI. Evolution of the mammalian sex chromosomes has resulted in a heterologous X and Y pair, where the Y chromosome has lost most of its genes. Hence, there is a need for X-linked gene dosage compensation between XY males and XX females. In placental mammals, this is achieved by random inactivation of one X chromosome in all female somatic cells 1 . Upregulation of Xist transcription on the future inactive X chromosome acts against Tsix antisense transcription, and spreading of Xist RNA in cis triggers epigenetic changes leading to X-chromosome inactivation. Previously, we have shown that the X-encoded E3 ubiquitin ligase RNF12 is upregulated in differentiating mouse embryonic stem cells and activates Xist transcription and X-chromosome inactivation 2 . Here we identify the pluripotency factor REX1 as a key target of RNF12 in the mechanism of X-chromosome inactivation. RNF12 causes ubiquitination and proteasomal degradation of REX1, and Rnf12 knockout embryonic stem cells show an increased level of REX1. Using chromatin immunoprecipitation sequencing, REX1 binding sites were detected in Xist and Tsix regulatory regions. Overexpression of REX1 in female embryonic stem cells was found to inhibit Xist transcription and X-chromosome inactivation, whereas male Rex1 +/− embryonic stem cells showed ectopic X-chromosome inactivation. From this, we propose that RNF12 causes REX1 breakdown through dose-dependent catalysis, thereby representing an important pathway to initiate X-chromosome inactivation. Rex1 and Xist are present only in placental mammals, which points to co-evolution of these two genes and X-chromosome inactivation.
doi_str_mv 10.1038/nature11070
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1015097638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A292088159</galeid><sourcerecordid>A292088159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c616t-a787885d121f773fc00d8fa2056b2e4f380117b4b878b8e52c87ac1f14d450683</originalsourceid><addsrcrecordid>eNpt0t1rFDEQAPAgij2rT77LogiKbs1kP5J7LKXVYlE4Ffq2ZLOTNWU3uSZZaf_75rzT3umRh8Dkl5lkGEKeAz0CWogPVsbJIwDl9AGZQcnrvKwFf0hmlDKRU1HUB-RJCFeU0gp4-ZgcMFbNa6jZjHxefDkDlhlropERQ3aZq5_ejS64EVNYqmh-yWiczdrbLErfYzS2zxanl5Bp57MOey-73-IpeaTlEPDZZj8kP85Ov598yi--fjw_Ob7IVaoZc8kFF6LqgIHmvNCK0k5oyWhVtwxLXQgKwNuyTawVWDEluFSgoezKitaiOCRv1nmX3l1PGGIzmqBwGKRFN4UGKFR0zutiRV_9Q6_c5G163UrxmjJawr3q5YCNsdpFL9UqaXPM5owKAdU8qXyP6tGil4OzqE0K7_iXe7xamutmGx3tQWl1OBq1N-vbnQvJRLyJvZxCaM6_LXbtu7VV3oXgUTdLb0bpb9Pnm9XsNFuzk_SLTa-mdsTur_0zLAm83gAZlBy0l1aZcO8qIYo5FMm9X7uQjmyPfrvp_9e9A6dq1Uw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1017602041</pqid></control><display><type>article</type><title>RNF12 initiates X-chromosome inactivation by targeting REX1 for degradation</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Gontan, Cristina ; Achame, Eskeatnaf Mulugeta ; Demmers, Jeroen ; Barakat, Tahsin Stefan ; Rentmeester, Eveline ; van IJcken, Wilfred ; Grootegoed, J. Anton ; Gribnau, Joost</creator><creatorcontrib>Gontan, Cristina ; Achame, Eskeatnaf Mulugeta ; Demmers, Jeroen ; Barakat, Tahsin Stefan ; Rentmeester, Eveline ; van IJcken, Wilfred ; Grootegoed, J. Anton ; Gribnau, Joost</creatorcontrib><description>The pluripotency factor REX1 is a key target of RNF12 during X-chromosome inactivation; degradation of REX1 by RNF12 leads to relief of its inhibitory action on X-chromosome inactivation. X-chromosome inactivation by RNF12 In placental mammals, X-linked gene dosage compensation between XY males and XX females is achieved by random inactivation of one X chromosome in female somatic cells. The E3 ubiquitin ligase RNF12 is required for initiation of X-chromosome inactivation (XCI) in embryonic stem cells, but its downstream targets have been unclear. Here, Gribnau and colleagues demonstrate that the pluripotency factor REX1 is a key target of RNF12 during XCI. RNF12 degradation of REX1 leads to relief of its inhibitory action on XCI. Evolution of the mammalian sex chromosomes has resulted in a heterologous X and Y pair, where the Y chromosome has lost most of its genes. Hence, there is a need for X-linked gene dosage compensation between XY males and XX females. In placental mammals, this is achieved by random inactivation of one X chromosome in all female somatic cells 1 . Upregulation of Xist transcription on the future inactive X chromosome acts against Tsix antisense transcription, and spreading of Xist RNA in cis triggers epigenetic changes leading to X-chromosome inactivation. Previously, we have shown that the X-encoded E3 ubiquitin ligase RNF12 is upregulated in differentiating mouse embryonic stem cells and activates Xist transcription and X-chromosome inactivation 2 . Here we identify the pluripotency factor REX1 as a key target of RNF12 in the mechanism of X-chromosome inactivation. RNF12 causes ubiquitination and proteasomal degradation of REX1, and Rnf12 knockout embryonic stem cells show an increased level of REX1. Using chromatin immunoprecipitation sequencing, REX1 binding sites were detected in Xist and Tsix regulatory regions. Overexpression of REX1 in female embryonic stem cells was found to inhibit Xist transcription and X-chromosome inactivation, whereas male Rex1 +/− embryonic stem cells showed ectopic X-chromosome inactivation. From this, we propose that RNF12 causes REX1 breakdown through dose-dependent catalysis, thereby representing an important pathway to initiate X-chromosome inactivation. Rex1 and Xist are present only in placental mammals, which points to co-evolution of these two genes and X-chromosome inactivation.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature11070</identifier><identifier>PMID: 22596162</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/136 ; 631/181/2474 ; 631/208/212/177 ; 631/337/103 ; Amino Acid Sequence ; Analytical, structural and metabolic biochemistry ; Animals ; Binding Sites ; Biological and medical sciences ; Catalysis ; Chromosomes ; Embryonic stem cells ; Embryonic Stem Cells - metabolism ; Evolution ; Female ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation ; Genetic aspects ; Genetic transcription ; Genetics ; Humanities and Social Sciences ; Inactivation ; letter ; Ligases ; Male ; Mammals ; Mass spectrometry ; Mice ; Molecular and cellular biology ; Molecular Sequence Data ; multidisciplinary ; Physiological aspects ; Proteasome Endopeptidase Complex - metabolism ; Protein Binding ; Proteins ; RNA, Long Noncoding ; RNA, Untranslated - genetics ; Science ; Science (multidisciplinary) ; Stem cells ; Transcription Factors - deficiency ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcription, Genetic ; Ubiquitin-Protein Ligases - genetics ; Ubiquitin-Protein Ligases - metabolism ; Ubiquitination ; X chromosome ; X Chromosome - genetics ; X Chromosome Inactivation</subject><ispartof>Nature (London), 2012-05, Vol.485 (7398), p.386-390</ispartof><rights>Springer Nature Limited 2012</rights><rights>2014 INIST-CNRS</rights><rights>COPYRIGHT 2012 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group May 17, 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c616t-a787885d121f773fc00d8fa2056b2e4f380117b4b878b8e52c87ac1f14d450683</citedby><cites>FETCH-LOGICAL-c616t-a787885d121f773fc00d8fa2056b2e4f380117b4b878b8e52c87ac1f14d450683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature11070$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature11070$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25883913$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22596162$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gontan, Cristina</creatorcontrib><creatorcontrib>Achame, Eskeatnaf Mulugeta</creatorcontrib><creatorcontrib>Demmers, Jeroen</creatorcontrib><creatorcontrib>Barakat, Tahsin Stefan</creatorcontrib><creatorcontrib>Rentmeester, Eveline</creatorcontrib><creatorcontrib>van IJcken, Wilfred</creatorcontrib><creatorcontrib>Grootegoed, J. Anton</creatorcontrib><creatorcontrib>Gribnau, Joost</creatorcontrib><title>RNF12 initiates X-chromosome inactivation by targeting REX1 for degradation</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The pluripotency factor REX1 is a key target of RNF12 during X-chromosome inactivation; degradation of REX1 by RNF12 leads to relief of its inhibitory action on X-chromosome inactivation. X-chromosome inactivation by RNF12 In placental mammals, X-linked gene dosage compensation between XY males and XX females is achieved by random inactivation of one X chromosome in female somatic cells. The E3 ubiquitin ligase RNF12 is required for initiation of X-chromosome inactivation (XCI) in embryonic stem cells, but its downstream targets have been unclear. Here, Gribnau and colleagues demonstrate that the pluripotency factor REX1 is a key target of RNF12 during XCI. RNF12 degradation of REX1 leads to relief of its inhibitory action on XCI. Evolution of the mammalian sex chromosomes has resulted in a heterologous X and Y pair, where the Y chromosome has lost most of its genes. Hence, there is a need for X-linked gene dosage compensation between XY males and XX females. In placental mammals, this is achieved by random inactivation of one X chromosome in all female somatic cells 1 . Upregulation of Xist transcription on the future inactive X chromosome acts against Tsix antisense transcription, and spreading of Xist RNA in cis triggers epigenetic changes leading to X-chromosome inactivation. Previously, we have shown that the X-encoded E3 ubiquitin ligase RNF12 is upregulated in differentiating mouse embryonic stem cells and activates Xist transcription and X-chromosome inactivation 2 . Here we identify the pluripotency factor REX1 as a key target of RNF12 in the mechanism of X-chromosome inactivation. RNF12 causes ubiquitination and proteasomal degradation of REX1, and Rnf12 knockout embryonic stem cells show an increased level of REX1. Using chromatin immunoprecipitation sequencing, REX1 binding sites were detected in Xist and Tsix regulatory regions. Overexpression of REX1 in female embryonic stem cells was found to inhibit Xist transcription and X-chromosome inactivation, whereas male Rex1 +/− embryonic stem cells showed ectopic X-chromosome inactivation. From this, we propose that RNF12 causes REX1 breakdown through dose-dependent catalysis, thereby representing an important pathway to initiate X-chromosome inactivation. Rex1 and Xist are present only in placental mammals, which points to co-evolution of these two genes and X-chromosome inactivation.</description><subject>631/136</subject><subject>631/181/2474</subject><subject>631/208/212/177</subject><subject>631/337/103</subject><subject>Amino Acid Sequence</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Animals</subject><subject>Binding Sites</subject><subject>Biological and medical sciences</subject><subject>Catalysis</subject><subject>Chromosomes</subject><subject>Embryonic stem cells</subject><subject>Embryonic Stem Cells - metabolism</subject><subject>Evolution</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation</subject><subject>Genetic aspects</subject><subject>Genetic transcription</subject><subject>Genetics</subject><subject>Humanities and Social Sciences</subject><subject>Inactivation</subject><subject>letter</subject><subject>Ligases</subject><subject>Male</subject><subject>Mammals</subject><subject>Mass spectrometry</subject><subject>Mice</subject><subject>Molecular and cellular biology</subject><subject>Molecular Sequence Data</subject><subject>multidisciplinary</subject><subject>Physiological aspects</subject><subject>Proteasome Endopeptidase Complex - metabolism</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>RNA, Long Noncoding</subject><subject>RNA, Untranslated - genetics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stem cells</subject><subject>Transcription Factors - deficiency</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><subject>Ubiquitin-Protein Ligases - genetics</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><subject>Ubiquitination</subject><subject>X chromosome</subject><subject>X Chromosome - genetics</subject><subject>X Chromosome Inactivation</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpt0t1rFDEQAPAgij2rT77LogiKbs1kP5J7LKXVYlE4Ffq2ZLOTNWU3uSZZaf_75rzT3umRh8Dkl5lkGEKeAz0CWogPVsbJIwDl9AGZQcnrvKwFf0hmlDKRU1HUB-RJCFeU0gp4-ZgcMFbNa6jZjHxefDkDlhlropERQ3aZq5_ejS64EVNYqmh-yWiczdrbLErfYzS2zxanl5Bp57MOey-73-IpeaTlEPDZZj8kP85Ov598yi--fjw_Ob7IVaoZc8kFF6LqgIHmvNCK0k5oyWhVtwxLXQgKwNuyTawVWDEluFSgoezKitaiOCRv1nmX3l1PGGIzmqBwGKRFN4UGKFR0zutiRV_9Q6_c5G163UrxmjJawr3q5YCNsdpFL9UqaXPM5owKAdU8qXyP6tGil4OzqE0K7_iXe7xamutmGx3tQWl1OBq1N-vbnQvJRLyJvZxCaM6_LXbtu7VV3oXgUTdLb0bpb9Pnm9XsNFuzk_SLTa-mdsTur_0zLAm83gAZlBy0l1aZcO8qIYo5FMm9X7uQjmyPfrvp_9e9A6dq1Uw</recordid><startdate>20120517</startdate><enddate>20120517</enddate><creator>Gontan, Cristina</creator><creator>Achame, Eskeatnaf Mulugeta</creator><creator>Demmers, Jeroen</creator><creator>Barakat, Tahsin Stefan</creator><creator>Rentmeester, Eveline</creator><creator>van IJcken, Wilfred</creator><creator>Grootegoed, J. Anton</creator><creator>Gribnau, Joost</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20120517</creationdate><title>RNF12 initiates X-chromosome inactivation by targeting REX1 for degradation</title><author>Gontan, Cristina ; Achame, Eskeatnaf Mulugeta ; Demmers, Jeroen ; Barakat, Tahsin Stefan ; Rentmeester, Eveline ; van IJcken, Wilfred ; Grootegoed, J. Anton ; Gribnau, Joost</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c616t-a787885d121f773fc00d8fa2056b2e4f380117b4b878b8e52c87ac1f14d450683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>631/136</topic><topic>631/181/2474</topic><topic>631/208/212/177</topic><topic>631/337/103</topic><topic>Amino Acid Sequence</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Animals</topic><topic>Binding Sites</topic><topic>Biological and medical sciences</topic><topic>Catalysis</topic><topic>Chromosomes</topic><topic>Embryonic stem cells</topic><topic>Embryonic Stem Cells - metabolism</topic><topic>Evolution</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation</topic><topic>Genetic aspects</topic><topic>Genetic transcription</topic><topic>Genetics</topic><topic>Humanities and Social Sciences</topic><topic>Inactivation</topic><topic>letter</topic><topic>Ligases</topic><topic>Male</topic><topic>Mammals</topic><topic>Mass spectrometry</topic><topic>Mice</topic><topic>Molecular and cellular biology</topic><topic>Molecular Sequence Data</topic><topic>multidisciplinary</topic><topic>Physiological aspects</topic><topic>Proteasome Endopeptidase Complex - metabolism</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>RNA, Long Noncoding</topic><topic>RNA, Untranslated - genetics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stem cells</topic><topic>Transcription Factors - deficiency</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><topic>Ubiquitin-Protein Ligases - genetics</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><topic>Ubiquitination</topic><topic>X chromosome</topic><topic>X Chromosome - genetics</topic><topic>X Chromosome Inactivation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gontan, Cristina</creatorcontrib><creatorcontrib>Achame, Eskeatnaf Mulugeta</creatorcontrib><creatorcontrib>Demmers, Jeroen</creatorcontrib><creatorcontrib>Barakat, Tahsin Stefan</creatorcontrib><creatorcontrib>Rentmeester, Eveline</creatorcontrib><creatorcontrib>van IJcken, Wilfred</creatorcontrib><creatorcontrib>Grootegoed, J. Anton</creatorcontrib><creatorcontrib>Gribnau, Joost</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gontan, Cristina</au><au>Achame, Eskeatnaf Mulugeta</au><au>Demmers, Jeroen</au><au>Barakat, Tahsin Stefan</au><au>Rentmeester, Eveline</au><au>van IJcken, Wilfred</au><au>Grootegoed, J. Anton</au><au>Gribnau, Joost</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RNF12 initiates X-chromosome inactivation by targeting REX1 for degradation</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2012-05-17</date><risdate>2012</risdate><volume>485</volume><issue>7398</issue><spage>386</spage><epage>390</epage><pages>386-390</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>The pluripotency factor REX1 is a key target of RNF12 during X-chromosome inactivation; degradation of REX1 by RNF12 leads to relief of its inhibitory action on X-chromosome inactivation. X-chromosome inactivation by RNF12 In placental mammals, X-linked gene dosage compensation between XY males and XX females is achieved by random inactivation of one X chromosome in female somatic cells. The E3 ubiquitin ligase RNF12 is required for initiation of X-chromosome inactivation (XCI) in embryonic stem cells, but its downstream targets have been unclear. Here, Gribnau and colleagues demonstrate that the pluripotency factor REX1 is a key target of RNF12 during XCI. RNF12 degradation of REX1 leads to relief of its inhibitory action on XCI. Evolution of the mammalian sex chromosomes has resulted in a heterologous X and Y pair, where the Y chromosome has lost most of its genes. Hence, there is a need for X-linked gene dosage compensation between XY males and XX females. In placental mammals, this is achieved by random inactivation of one X chromosome in all female somatic cells 1 . Upregulation of Xist transcription on the future inactive X chromosome acts against Tsix antisense transcription, and spreading of Xist RNA in cis triggers epigenetic changes leading to X-chromosome inactivation. Previously, we have shown that the X-encoded E3 ubiquitin ligase RNF12 is upregulated in differentiating mouse embryonic stem cells and activates Xist transcription and X-chromosome inactivation 2 . Here we identify the pluripotency factor REX1 as a key target of RNF12 in the mechanism of X-chromosome inactivation. RNF12 causes ubiquitination and proteasomal degradation of REX1, and Rnf12 knockout embryonic stem cells show an increased level of REX1. Using chromatin immunoprecipitation sequencing, REX1 binding sites were detected in Xist and Tsix regulatory regions. Overexpression of REX1 in female embryonic stem cells was found to inhibit Xist transcription and X-chromosome inactivation, whereas male Rex1 +/− embryonic stem cells showed ectopic X-chromosome inactivation. From this, we propose that RNF12 causes REX1 breakdown through dose-dependent catalysis, thereby representing an important pathway to initiate X-chromosome inactivation. Rex1 and Xist are present only in placental mammals, which points to co-evolution of these two genes and X-chromosome inactivation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22596162</pmid><doi>10.1038/nature11070</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2012-05, Vol.485 (7398), p.386-390
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_1015097638
source MEDLINE; Springer Nature - Complete Springer Journals; Nature
subjects 631/136
631/181/2474
631/208/212/177
631/337/103
Amino Acid Sequence
Analytical, structural and metabolic biochemistry
Animals
Binding Sites
Biological and medical sciences
Catalysis
Chromosomes
Embryonic stem cells
Embryonic Stem Cells - metabolism
Evolution
Female
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation
Genetic aspects
Genetic transcription
Genetics
Humanities and Social Sciences
Inactivation
letter
Ligases
Male
Mammals
Mass spectrometry
Mice
Molecular and cellular biology
Molecular Sequence Data
multidisciplinary
Physiological aspects
Proteasome Endopeptidase Complex - metabolism
Protein Binding
Proteins
RNA, Long Noncoding
RNA, Untranslated - genetics
Science
Science (multidisciplinary)
Stem cells
Transcription Factors - deficiency
Transcription Factors - genetics
Transcription Factors - metabolism
Transcription, Genetic
Ubiquitin-Protein Ligases - genetics
Ubiquitin-Protein Ligases - metabolism
Ubiquitination
X chromosome
X Chromosome - genetics
X Chromosome Inactivation
title RNF12 initiates X-chromosome inactivation by targeting REX1 for degradation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T12%3A08%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RNF12%20initiates%20X-chromosome%20inactivation%20by%20targeting%20REX1%20for%20degradation&rft.jtitle=Nature%20(London)&rft.au=Gontan,%20Cristina&rft.date=2012-05-17&rft.volume=485&rft.issue=7398&rft.spage=386&rft.epage=390&rft.pages=386-390&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature11070&rft_dat=%3Cgale_proqu%3EA292088159%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1017602041&rft_id=info:pmid/22596162&rft_galeid=A292088159&rfr_iscdi=true