Effects of low atmospheric CO₂ and elevated temperature during growth on the gas exchange responses of C₃, C₃-C₄ intermediate, and C₄ species from three evolutionary lineages of C₄ photosynthesis

This study evaluates acclimation of photosynthesis and stomatal conductance in three evolutionary lineages of C₃, C₃-C₄ intermediate, and C₄ species grown in the low CO₄ and hot conditions proposed to favo r the evolution of C₄ photosynthesis. Closely related C₃ , C₃ -C₄ , and C₄ species in the gene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oecologia 2012-06, Vol.169 (2), p.341-352
Hauptverfasser: Vogan, Patrick J., Sage, Rowan F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 352
container_issue 2
container_start_page 341
container_title Oecologia
container_volume 169
creator Vogan, Patrick J.
Sage, Rowan F.
description This study evaluates acclimation of photosynthesis and stomatal conductance in three evolutionary lineages of C₃, C₃-C₄ intermediate, and C₄ species grown in the low CO₄ and hot conditions proposed to favo r the evolution of C₄ photosynthesis. Closely related C₃ , C₃ -C₄ , and C₄ species in the genera Flaveria, Heliotropium, and Alternanthera were grown near 380 and 180 µmol CO₂ mol⁻¹ air and day/night temperatures of 37/29°C. Growth CO₂ had no effect on photosynthetic capacity or nitrogen allocation to Rubisco and electron transport in any of the species. There was also no effect of growth CO₂ on photosynthetic and stomatal responses to intercellular CO₂ concentration. These results demonstrate little ability to acclimate to low CO₂ growth conditions in closely related C₃ and C₃–C₄ species, indicating that, during past episodes of low CO₂ , individual C₃ plants had little ability to adjust their photosynthetic physiology to compensate for carbon starvation. This deficiency could have favored selection for more efficient modes of carbon assimilation, such as C₃–C₄ intermediacy. The C₃–C₄ species had approximately 50% greater rates of net CO₂ assimilation than the C₃ species when measured at the growth conditions of 180 µmol mol⁻¹ and 37°C, demonstrating the superiority of the C₃–C₄ pathway in low atmospheric CO₂ and hot climates of recent geological time.
doi_str_mv 10.1007/s00442-011-2201-z
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1014111642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41500035</jstor_id><sourcerecordid>41500035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347z-c963ac7cb81a37adb6ebc77796bb13d5b57607c7ef16130cfc997829935cda933</originalsourceid><addsrcrecordid>eNp9ksuO1DAQRS0EYpqBD2AB8pLFBPxI4vYStYaHNNJsYB05TiVxK7GD7cyjl838H_8wX4K7M_SSTVmy7j2lqlsIvaXkIyVEfAqE5DnLCKUZY4Rmu2doRXPOMiq5fI5WhDCZrYtcnqFXIWwJoTktipfojDHKZc7WK_Tnsm1Bx4Bdiwd3i1UcXZh68EbjzfXjfo-VbTAMcKMiNDjCOIFXcfaAm9kb2-HOu9vYY2dx7AF3KmC4072yHWAPYXI2wJG-edz_vjjWLJUHbGwEP0JjEvji2OX4HSbQJjla78ZE9AAYbtwwR-Os8vd4MBZUd0I-4Kl30YV7m7oHE16jF60aArx5es_Rzy-XPzbfsqvrr983n68yzXOxy7QsudJC12uquFBNXUKthRCyrGvKm6IuREmEFtDSknKiWy2lWDMpeaEbJTk_Rx8W7uTdrxlCrEYTNAyDsuDmUNHDriktc5akdJFq70Lw0FaTN2OaJYmqQ47VkmOVcqwOOVa75Hn_hJ_rtKOT419wScAWQZgOKYCvtm72No38X-q7xbQN0fkTNB0FIYQX_C9DKbtm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1014111642</pqid></control><display><type>article</type><title>Effects of low atmospheric CO₂ and elevated temperature during growth on the gas exchange responses of C₃, C₃-C₄ intermediate, and C₄ species from three evolutionary lineages of C₄ photosynthesis</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>Springer Nature - Complete Springer Journals</source><creator>Vogan, Patrick J. ; Sage, Rowan F.</creator><creatorcontrib>Vogan, Patrick J. ; Sage, Rowan F.</creatorcontrib><description>This study evaluates acclimation of photosynthesis and stomatal conductance in three evolutionary lineages of C₃, C₃-C₄ intermediate, and C₄ species grown in the low CO₄ and hot conditions proposed to favo r the evolution of C₄ photosynthesis. Closely related C₃ , C₃ -C₄ , and C₄ species in the genera Flaveria, Heliotropium, and Alternanthera were grown near 380 and 180 µmol CO₂ mol⁻¹ air and day/night temperatures of 37/29°C. Growth CO₂ had no effect on photosynthetic capacity or nitrogen allocation to Rubisco and electron transport in any of the species. There was also no effect of growth CO₂ on photosynthetic and stomatal responses to intercellular CO₂ concentration. These results demonstrate little ability to acclimate to low CO₂ growth conditions in closely related C₃ and C₃–C₄ species, indicating that, during past episodes of low CO₂ , individual C₃ plants had little ability to adjust their photosynthetic physiology to compensate for carbon starvation. This deficiency could have favored selection for more efficient modes of carbon assimilation, such as C₃–C₄ intermediacy. The C₃–C₄ species had approximately 50% greater rates of net CO₂ assimilation than the C₃ species when measured at the growth conditions of 180 µmol mol⁻¹ and 37°C, demonstrating the superiority of the C₃–C₄ pathway in low atmospheric CO₂ and hot climates of recent geological time.</description><identifier>ISSN: 0029-8549</identifier><identifier>EISSN: 1432-1939</identifier><identifier>DOI: 10.1007/s00442-011-2201-z</identifier><identifier>PMID: 22139428</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer</publisher><subject>Acclimatization ; Atmosphere ; Atmospherics ; Biomedical and Life Sciences ; C3 plants ; C4 photosynthesis ; Carbon Dioxide - metabolism ; Chlorophyll - analysis ; Chlorophyll - metabolism ; Ecology ; Evolution ; Flaveria - growth &amp; development ; Flaveria - physiology ; Heliotropium - growth &amp; development ; Heliotropium - physiology ; Hydrology/Water Resources ; Life Sciences ; Nitrogen - analysis ; Nitrogen - metabolism ; Photosynthesis ; Photosynthesis - physiology ; PHYSIOLOGICAL ECOLOGY ; Physiological ecology - Original research ; Plant cells ; Plant growth ; Plant Leaves - physiology ; Plant Physiological Phenomena ; Plant Sciences ; Plant Stomata - metabolism ; Plants ; Ribulose-Bisphosphate Carboxylase - analysis ; Ribulose-Bisphosphate Carboxylase - metabolism ; Sage ; Temperature</subject><ispartof>Oecologia, 2012-06, Vol.169 (2), p.341-352</ispartof><rights>Springer-Verlag Berlin Heidelberg 2012</rights><rights>Springer-Verlag 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347z-c963ac7cb81a37adb6ebc77796bb13d5b57607c7ef16130cfc997829935cda933</citedby><cites>FETCH-LOGICAL-c347z-c963ac7cb81a37adb6ebc77796bb13d5b57607c7ef16130cfc997829935cda933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41500035$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41500035$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27903,27904,41467,42536,51298,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22139428$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vogan, Patrick J.</creatorcontrib><creatorcontrib>Sage, Rowan F.</creatorcontrib><title>Effects of low atmospheric CO₂ and elevated temperature during growth on the gas exchange responses of C₃, C₃-C₄ intermediate, and C₄ species from three evolutionary lineages of C₄ photosynthesis</title><title>Oecologia</title><addtitle>Oecologia</addtitle><addtitle>Oecologia</addtitle><description>This study evaluates acclimation of photosynthesis and stomatal conductance in three evolutionary lineages of C₃, C₃-C₄ intermediate, and C₄ species grown in the low CO₄ and hot conditions proposed to favo r the evolution of C₄ photosynthesis. Closely related C₃ , C₃ -C₄ , and C₄ species in the genera Flaveria, Heliotropium, and Alternanthera were grown near 380 and 180 µmol CO₂ mol⁻¹ air and day/night temperatures of 37/29°C. Growth CO₂ had no effect on photosynthetic capacity or nitrogen allocation to Rubisco and electron transport in any of the species. There was also no effect of growth CO₂ on photosynthetic and stomatal responses to intercellular CO₂ concentration. These results demonstrate little ability to acclimate to low CO₂ growth conditions in closely related C₃ and C₃–C₄ species, indicating that, during past episodes of low CO₂ , individual C₃ plants had little ability to adjust their photosynthetic physiology to compensate for carbon starvation. This deficiency could have favored selection for more efficient modes of carbon assimilation, such as C₃–C₄ intermediacy. The C₃–C₄ species had approximately 50% greater rates of net CO₂ assimilation than the C₃ species when measured at the growth conditions of 180 µmol mol⁻¹ and 37°C, demonstrating the superiority of the C₃–C₄ pathway in low atmospheric CO₂ and hot climates of recent geological time.</description><subject>Acclimatization</subject><subject>Atmosphere</subject><subject>Atmospherics</subject><subject>Biomedical and Life Sciences</subject><subject>C3 plants</subject><subject>C4 photosynthesis</subject><subject>Carbon Dioxide - metabolism</subject><subject>Chlorophyll - analysis</subject><subject>Chlorophyll - metabolism</subject><subject>Ecology</subject><subject>Evolution</subject><subject>Flaveria - growth &amp; development</subject><subject>Flaveria - physiology</subject><subject>Heliotropium - growth &amp; development</subject><subject>Heliotropium - physiology</subject><subject>Hydrology/Water Resources</subject><subject>Life Sciences</subject><subject>Nitrogen - analysis</subject><subject>Nitrogen - metabolism</subject><subject>Photosynthesis</subject><subject>Photosynthesis - physiology</subject><subject>PHYSIOLOGICAL ECOLOGY</subject><subject>Physiological ecology - Original research</subject><subject>Plant cells</subject><subject>Plant growth</subject><subject>Plant Leaves - physiology</subject><subject>Plant Physiological Phenomena</subject><subject>Plant Sciences</subject><subject>Plant Stomata - metabolism</subject><subject>Plants</subject><subject>Ribulose-Bisphosphate Carboxylase - analysis</subject><subject>Ribulose-Bisphosphate Carboxylase - metabolism</subject><subject>Sage</subject><subject>Temperature</subject><issn>0029-8549</issn><issn>1432-1939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9ksuO1DAQRS0EYpqBD2AB8pLFBPxI4vYStYaHNNJsYB05TiVxK7GD7cyjl838H_8wX4K7M_SSTVmy7j2lqlsIvaXkIyVEfAqE5DnLCKUZY4Rmu2doRXPOMiq5fI5WhDCZrYtcnqFXIWwJoTktipfojDHKZc7WK_Tnsm1Bx4Bdiwd3i1UcXZh68EbjzfXjfo-VbTAMcKMiNDjCOIFXcfaAm9kb2-HOu9vYY2dx7AF3KmC4072yHWAPYXI2wJG-edz_vjjWLJUHbGwEP0JjEvji2OX4HSbQJjla78ZE9AAYbtwwR-Os8vd4MBZUd0I-4Kl30YV7m7oHE16jF60aArx5es_Rzy-XPzbfsqvrr983n68yzXOxy7QsudJC12uquFBNXUKthRCyrGvKm6IuREmEFtDSknKiWy2lWDMpeaEbJTk_Rx8W7uTdrxlCrEYTNAyDsuDmUNHDriktc5akdJFq70Lw0FaTN2OaJYmqQ47VkmOVcqwOOVa75Hn_hJ_rtKOT419wScAWQZgOKYCvtm72No38X-q7xbQN0fkTNB0FIYQX_C9DKbtm</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Vogan, Patrick J.</creator><creator>Sage, Rowan F.</creator><general>Springer</general><general>Springer-Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120601</creationdate><title>Effects of low atmospheric CO₂ and elevated temperature during growth on the gas exchange responses of C₃, C₃-C₄ intermediate, and C₄ species from three evolutionary lineages of C₄ photosynthesis</title><author>Vogan, Patrick J. ; Sage, Rowan F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347z-c963ac7cb81a37adb6ebc77796bb13d5b57607c7ef16130cfc997829935cda933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acclimatization</topic><topic>Atmosphere</topic><topic>Atmospherics</topic><topic>Biomedical and Life Sciences</topic><topic>C3 plants</topic><topic>C4 photosynthesis</topic><topic>Carbon Dioxide - metabolism</topic><topic>Chlorophyll - analysis</topic><topic>Chlorophyll - metabolism</topic><topic>Ecology</topic><topic>Evolution</topic><topic>Flaveria - growth &amp; development</topic><topic>Flaveria - physiology</topic><topic>Heliotropium - growth &amp; development</topic><topic>Heliotropium - physiology</topic><topic>Hydrology/Water Resources</topic><topic>Life Sciences</topic><topic>Nitrogen - analysis</topic><topic>Nitrogen - metabolism</topic><topic>Photosynthesis</topic><topic>Photosynthesis - physiology</topic><topic>PHYSIOLOGICAL ECOLOGY</topic><topic>Physiological ecology - Original research</topic><topic>Plant cells</topic><topic>Plant growth</topic><topic>Plant Leaves - physiology</topic><topic>Plant Physiological Phenomena</topic><topic>Plant Sciences</topic><topic>Plant Stomata - metabolism</topic><topic>Plants</topic><topic>Ribulose-Bisphosphate Carboxylase - analysis</topic><topic>Ribulose-Bisphosphate Carboxylase - metabolism</topic><topic>Sage</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vogan, Patrick J.</creatorcontrib><creatorcontrib>Sage, Rowan F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Oecologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vogan, Patrick J.</au><au>Sage, Rowan F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of low atmospheric CO₂ and elevated temperature during growth on the gas exchange responses of C₃, C₃-C₄ intermediate, and C₄ species from three evolutionary lineages of C₄ photosynthesis</atitle><jtitle>Oecologia</jtitle><stitle>Oecologia</stitle><addtitle>Oecologia</addtitle><date>2012-06-01</date><risdate>2012</risdate><volume>169</volume><issue>2</issue><spage>341</spage><epage>352</epage><pages>341-352</pages><issn>0029-8549</issn><eissn>1432-1939</eissn><abstract>This study evaluates acclimation of photosynthesis and stomatal conductance in three evolutionary lineages of C₃, C₃-C₄ intermediate, and C₄ species grown in the low CO₄ and hot conditions proposed to favo r the evolution of C₄ photosynthesis. Closely related C₃ , C₃ -C₄ , and C₄ species in the genera Flaveria, Heliotropium, and Alternanthera were grown near 380 and 180 µmol CO₂ mol⁻¹ air and day/night temperatures of 37/29°C. Growth CO₂ had no effect on photosynthetic capacity or nitrogen allocation to Rubisco and electron transport in any of the species. There was also no effect of growth CO₂ on photosynthetic and stomatal responses to intercellular CO₂ concentration. These results demonstrate little ability to acclimate to low CO₂ growth conditions in closely related C₃ and C₃–C₄ species, indicating that, during past episodes of low CO₂ , individual C₃ plants had little ability to adjust their photosynthetic physiology to compensate for carbon starvation. This deficiency could have favored selection for more efficient modes of carbon assimilation, such as C₃–C₄ intermediacy. The C₃–C₄ species had approximately 50% greater rates of net CO₂ assimilation than the C₃ species when measured at the growth conditions of 180 µmol mol⁻¹ and 37°C, demonstrating the superiority of the C₃–C₄ pathway in low atmospheric CO₂ and hot climates of recent geological time.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer</pub><pmid>22139428</pmid><doi>10.1007/s00442-011-2201-z</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-8549
ispartof Oecologia, 2012-06, Vol.169 (2), p.341-352
issn 0029-8549
1432-1939
language eng
recordid cdi_proquest_miscellaneous_1014111642
source MEDLINE; Jstor Complete Legacy; Springer Nature - Complete Springer Journals
subjects Acclimatization
Atmosphere
Atmospherics
Biomedical and Life Sciences
C3 plants
C4 photosynthesis
Carbon Dioxide - metabolism
Chlorophyll - analysis
Chlorophyll - metabolism
Ecology
Evolution
Flaveria - growth & development
Flaveria - physiology
Heliotropium - growth & development
Heliotropium - physiology
Hydrology/Water Resources
Life Sciences
Nitrogen - analysis
Nitrogen - metabolism
Photosynthesis
Photosynthesis - physiology
PHYSIOLOGICAL ECOLOGY
Physiological ecology - Original research
Plant cells
Plant growth
Plant Leaves - physiology
Plant Physiological Phenomena
Plant Sciences
Plant Stomata - metabolism
Plants
Ribulose-Bisphosphate Carboxylase - analysis
Ribulose-Bisphosphate Carboxylase - metabolism
Sage
Temperature
title Effects of low atmospheric CO₂ and elevated temperature during growth on the gas exchange responses of C₃, C₃-C₄ intermediate, and C₄ species from three evolutionary lineages of C₄ photosynthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A15%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20low%20atmospheric%20CO%E2%82%82%20and%20elevated%20temperature%20during%20growth%20on%20the%20gas%20exchange%20responses%20of%20C%E2%82%83,%20C%E2%82%83-C%E2%82%84%20intermediate,%20and%20C%E2%82%84%20species%20from%20three%20evolutionary%20lineages%20of%20C%E2%82%84%20photosynthesis&rft.jtitle=Oecologia&rft.au=Vogan,%20Patrick%20J.&rft.date=2012-06-01&rft.volume=169&rft.issue=2&rft.spage=341&rft.epage=352&rft.pages=341-352&rft.issn=0029-8549&rft.eissn=1432-1939&rft_id=info:doi/10.1007/s00442-011-2201-z&rft_dat=%3Cjstor_proqu%3E41500035%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1014111642&rft_id=info:pmid/22139428&rft_jstor_id=41500035&rfr_iscdi=true