Assessing causal relationships between treatments and clinical outcomes: always read the fine print

Changes in clinical practice should be driven by relevant and reliable evidence. Hence, adoption of a new therapy requires demonstrating that it provides (causes) benefit. Such evidence is generally obtained from intent-to-treat analyses of randomized clinical trials (RCTs). In this paper, we review...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bone marrow transplantation (Basingstoke) 2012-05, Vol.47 (5), p.626-632
Hauptverfasser: Freidlin, B, Korn, E L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 632
container_issue 5
container_start_page 626
container_title Bone marrow transplantation (Basingstoke)
container_volume 47
creator Freidlin, B
Korn, E L
description Changes in clinical practice should be driven by relevant and reliable evidence. Hence, adoption of a new therapy requires demonstrating that it provides (causes) benefit. Such evidence is generally obtained from intent-to-treat analyses of randomized clinical trials (RCTs). In this paper, we review other approaches to assessing the causal relationship between treatments and outcomes: (1) inference from non-randomized (observational) studies, (2) analysis of randomized studies where patients received treatments other than those to which they were randomized and (3) analysis of studies where the outcome of interest is sometimes unobservable because of a competing event (competing risks). We conclude that for the practice-changing demonstration of a favorable benefit-to-risk ratio, the gold standard is the intent-to-treat analysis of RCTs. At the same time, we illustrate how careful application of special statistical methods for assessment of treatment–outcome causation can be instrumental in complementing existing randomized evidence and guiding design of future research.
doi_str_mv 10.1038/bmt.2011.119
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1014107540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A290293319</galeid><sourcerecordid>A290293319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c584t-a979ee63d60084e1da972d9dc6670e2f113292c1a46466e34cdd7e938ec8a8343</originalsourceid><addsrcrecordid>eNqN0s9rFDEUB_Agil2rN88yIIoHZ82vySS9LcVfUPCi5yGbebObMpOseRlK_3uz3dW2UkRyCITPS_KSLyEvGV0yKvSH9ZSXnDK2ZMw8IgsmW1U3QjWPyYJypWshlDkhzxAvKWVS0uYpOeFM8YbzZkHcChEQfdhUzs5oxyrBaLOPAbd-h9Ua8hVAqHICmycIGSsb-sqNPnhXdJyzixPgWWXHK3uNpdz2Vd5CNfgA1S75kJ-TJ4MdEV4c51Py49PH7-df6otvn7-ery5q12iZa2taA6BEryjVElhfFnhveqdUS4EPjAluuGNWKqkUCOn6vgUjNDhttZDilLw77LtL8ecMmLvJo4NxtAHijB0r_TPaNpL-D-WcGtbqQl__RS_jnEJppONKctZK1Yp_qbIXa1SreXurNnaEzoch5mTd_uhuxQ3lRghmilo-oMroYfIuBhh8Wb9X8PZOwRbsmLcYx_nmG-_D9wfoUkRMMHTlgyabrsslu32aupKmbp-mjt3wV8em5vUE_R_8Oz4FvDkCiyUNQ7LBebx1jday4fvXqQ8O94HYQLr7Og8c_As3aNzt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1011567827</pqid></control><display><type>article</type><title>Assessing causal relationships between treatments and clinical outcomes: always read the fine print</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Freidlin, B ; Korn, E L</creator><creatorcontrib>Freidlin, B ; Korn, E L</creatorcontrib><description>Changes in clinical practice should be driven by relevant and reliable evidence. Hence, adoption of a new therapy requires demonstrating that it provides (causes) benefit. Such evidence is generally obtained from intent-to-treat analyses of randomized clinical trials (RCTs). In this paper, we review other approaches to assessing the causal relationship between treatments and outcomes: (1) inference from non-randomized (observational) studies, (2) analysis of randomized studies where patients received treatments other than those to which they were randomized and (3) analysis of studies where the outcome of interest is sometimes unobservable because of a competing event (competing risks). We conclude that for the practice-changing demonstration of a favorable benefit-to-risk ratio, the gold standard is the intent-to-treat analysis of RCTs. At the same time, we illustrate how careful application of special statistical methods for assessment of treatment–outcome causation can be instrumental in complementing existing randomized evidence and guiding design of future research.</description><identifier>ISSN: 0268-3369</identifier><identifier>EISSN: 1476-5365</identifier><identifier>DOI: 10.1038/bmt.2011.119</identifier><identifier>PMID: 21625225</identifier><identifier>CODEN: BMTRE9</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Adoption ; Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy ; Biological and medical sciences ; Bone marrow ; Bone marrow transplantation ; Bone marrow, stem cells transplantation. Graft versus host reaction ; Cancer ; Care and treatment ; Cell Biology ; Clinical outcomes ; Clinical trials ; Hematology ; Humans ; Intention to Treat Analysis ; Internal Medicine ; Management ; Medical sciences ; Medicine ; Medicine &amp; Public Health ; Observational studies ; Public Health ; Randomized Controlled Trials as Topic ; Research Design ; review ; Risk ; Statistical methods ; Statistics ; Stem cell transplantation ; Stem Cells ; Transfusions. Complications. Transfusion reactions. Cell and gene therapy ; Transplantation ; Treatment Outcome</subject><ispartof>Bone marrow transplantation (Basingstoke), 2012-05, Vol.47 (5), p.626-632</ispartof><rights>Macmillan Publishers Limited 2012</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2012 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group May 2012</rights><rights>Macmillan Publishers Limited 2012.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c584t-a979ee63d60084e1da972d9dc6670e2f113292c1a46466e34cdd7e938ec8a8343</citedby><cites>FETCH-LOGICAL-c584t-a979ee63d60084e1da972d9dc6670e2f113292c1a46466e34cdd7e938ec8a8343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/bmt.2011.119$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/bmt.2011.119$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25884523$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21625225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Freidlin, B</creatorcontrib><creatorcontrib>Korn, E L</creatorcontrib><title>Assessing causal relationships between treatments and clinical outcomes: always read the fine print</title><title>Bone marrow transplantation (Basingstoke)</title><addtitle>Bone Marrow Transplant</addtitle><addtitle>Bone Marrow Transplant</addtitle><description>Changes in clinical practice should be driven by relevant and reliable evidence. Hence, adoption of a new therapy requires demonstrating that it provides (causes) benefit. Such evidence is generally obtained from intent-to-treat analyses of randomized clinical trials (RCTs). In this paper, we review other approaches to assessing the causal relationship between treatments and outcomes: (1) inference from non-randomized (observational) studies, (2) analysis of randomized studies where patients received treatments other than those to which they were randomized and (3) analysis of studies where the outcome of interest is sometimes unobservable because of a competing event (competing risks). We conclude that for the practice-changing demonstration of a favorable benefit-to-risk ratio, the gold standard is the intent-to-treat analysis of RCTs. At the same time, we illustrate how careful application of special statistical methods for assessment of treatment–outcome causation can be instrumental in complementing existing randomized evidence and guiding design of future research.</description><subject>Adoption</subject><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</subject><subject>Biological and medical sciences</subject><subject>Bone marrow</subject><subject>Bone marrow transplantation</subject><subject>Bone marrow, stem cells transplantation. Graft versus host reaction</subject><subject>Cancer</subject><subject>Care and treatment</subject><subject>Cell Biology</subject><subject>Clinical outcomes</subject><subject>Clinical trials</subject><subject>Hematology</subject><subject>Humans</subject><subject>Intention to Treat Analysis</subject><subject>Internal Medicine</subject><subject>Management</subject><subject>Medical sciences</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Observational studies</subject><subject>Public Health</subject><subject>Randomized Controlled Trials as Topic</subject><subject>Research Design</subject><subject>review</subject><subject>Risk</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Stem cell transplantation</subject><subject>Stem Cells</subject><subject>Transfusions. Complications. Transfusion reactions. Cell and gene therapy</subject><subject>Transplantation</subject><subject>Treatment Outcome</subject><issn>0268-3369</issn><issn>1476-5365</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqN0s9rFDEUB_Agil2rN88yIIoHZ82vySS9LcVfUPCi5yGbebObMpOseRlK_3uz3dW2UkRyCITPS_KSLyEvGV0yKvSH9ZSXnDK2ZMw8IgsmW1U3QjWPyYJypWshlDkhzxAvKWVS0uYpOeFM8YbzZkHcChEQfdhUzs5oxyrBaLOPAbd-h9Ua8hVAqHICmycIGSsb-sqNPnhXdJyzixPgWWXHK3uNpdz2Vd5CNfgA1S75kJ-TJ4MdEV4c51Py49PH7-df6otvn7-ery5q12iZa2taA6BEryjVElhfFnhveqdUS4EPjAluuGNWKqkUCOn6vgUjNDhttZDilLw77LtL8ecMmLvJo4NxtAHijB0r_TPaNpL-D-WcGtbqQl__RS_jnEJppONKctZK1Yp_qbIXa1SreXurNnaEzoch5mTd_uhuxQ3lRghmilo-oMroYfIuBhh8Wb9X8PZOwRbsmLcYx_nmG-_D9wfoUkRMMHTlgyabrsslu32aupKmbp-mjt3wV8em5vUE_R_8Oz4FvDkCiyUNQ7LBebx1jday4fvXqQ8O94HYQLr7Og8c_As3aNzt</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Freidlin, B</creator><creator>Korn, E L</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7T5</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20120501</creationdate><title>Assessing causal relationships between treatments and clinical outcomes: always read the fine print</title><author>Freidlin, B ; Korn, E L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c584t-a979ee63d60084e1da972d9dc6670e2f113292c1a46466e34cdd7e938ec8a8343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adoption</topic><topic>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</topic><topic>Biological and medical sciences</topic><topic>Bone marrow</topic><topic>Bone marrow transplantation</topic><topic>Bone marrow, stem cells transplantation. Graft versus host reaction</topic><topic>Cancer</topic><topic>Care and treatment</topic><topic>Cell Biology</topic><topic>Clinical outcomes</topic><topic>Clinical trials</topic><topic>Hematology</topic><topic>Humans</topic><topic>Intention to Treat Analysis</topic><topic>Internal Medicine</topic><topic>Management</topic><topic>Medical sciences</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Observational studies</topic><topic>Public Health</topic><topic>Randomized Controlled Trials as Topic</topic><topic>Research Design</topic><topic>review</topic><topic>Risk</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Stem cell transplantation</topic><topic>Stem Cells</topic><topic>Transfusions. Complications. Transfusion reactions. Cell and gene therapy</topic><topic>Transplantation</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freidlin, B</creatorcontrib><creatorcontrib>Korn, E L</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Bone marrow transplantation (Basingstoke)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freidlin, B</au><au>Korn, E L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing causal relationships between treatments and clinical outcomes: always read the fine print</atitle><jtitle>Bone marrow transplantation (Basingstoke)</jtitle><stitle>Bone Marrow Transplant</stitle><addtitle>Bone Marrow Transplant</addtitle><date>2012-05-01</date><risdate>2012</risdate><volume>47</volume><issue>5</issue><spage>626</spage><epage>632</epage><pages>626-632</pages><issn>0268-3369</issn><eissn>1476-5365</eissn><coden>BMTRE9</coden><abstract>Changes in clinical practice should be driven by relevant and reliable evidence. Hence, adoption of a new therapy requires demonstrating that it provides (causes) benefit. Such evidence is generally obtained from intent-to-treat analyses of randomized clinical trials (RCTs). In this paper, we review other approaches to assessing the causal relationship between treatments and outcomes: (1) inference from non-randomized (observational) studies, (2) analysis of randomized studies where patients received treatments other than those to which they were randomized and (3) analysis of studies where the outcome of interest is sometimes unobservable because of a competing event (competing risks). We conclude that for the practice-changing demonstration of a favorable benefit-to-risk ratio, the gold standard is the intent-to-treat analysis of RCTs. At the same time, we illustrate how careful application of special statistical methods for assessment of treatment–outcome causation can be instrumental in complementing existing randomized evidence and guiding design of future research.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>21625225</pmid><doi>10.1038/bmt.2011.119</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0268-3369
ispartof Bone marrow transplantation (Basingstoke), 2012-05, Vol.47 (5), p.626-632
issn 0268-3369
1476-5365
language eng
recordid cdi_proquest_miscellaneous_1014107540
source MEDLINE; SpringerLink Journals; Nature Journals Online; EZB-FREE-00999 freely available EZB journals
subjects Adoption
Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
Biological and medical sciences
Bone marrow
Bone marrow transplantation
Bone marrow, stem cells transplantation. Graft versus host reaction
Cancer
Care and treatment
Cell Biology
Clinical outcomes
Clinical trials
Hematology
Humans
Intention to Treat Analysis
Internal Medicine
Management
Medical sciences
Medicine
Medicine & Public Health
Observational studies
Public Health
Randomized Controlled Trials as Topic
Research Design
review
Risk
Statistical methods
Statistics
Stem cell transplantation
Stem Cells
Transfusions. Complications. Transfusion reactions. Cell and gene therapy
Transplantation
Treatment Outcome
title Assessing causal relationships between treatments and clinical outcomes: always read the fine print
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20causal%20relationships%20between%20treatments%20and%20clinical%20outcomes:%20always%20read%20the%20fine%20print&rft.jtitle=Bone%20marrow%20transplantation%20(Basingstoke)&rft.au=Freidlin,%20B&rft.date=2012-05-01&rft.volume=47&rft.issue=5&rft.spage=626&rft.epage=632&rft.pages=626-632&rft.issn=0268-3369&rft.eissn=1476-5365&rft.coden=BMTRE9&rft_id=info:doi/10.1038/bmt.2011.119&rft_dat=%3Cgale_proqu%3EA290293319%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1011567827&rft_id=info:pmid/21625225&rft_galeid=A290293319&rfr_iscdi=true