Assessing causal relationships between treatments and clinical outcomes: always read the fine print
Changes in clinical practice should be driven by relevant and reliable evidence. Hence, adoption of a new therapy requires demonstrating that it provides (causes) benefit. Such evidence is generally obtained from intent-to-treat analyses of randomized clinical trials (RCTs). In this paper, we review...
Gespeichert in:
Veröffentlicht in: | Bone marrow transplantation (Basingstoke) 2012-05, Vol.47 (5), p.626-632 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 632 |
---|---|
container_issue | 5 |
container_start_page | 626 |
container_title | Bone marrow transplantation (Basingstoke) |
container_volume | 47 |
creator | Freidlin, B Korn, E L |
description | Changes in clinical practice should be driven by relevant and reliable evidence. Hence, adoption of a new therapy requires demonstrating that it provides (causes) benefit. Such evidence is generally obtained from intent-to-treat analyses of randomized clinical trials (RCTs). In this paper, we review other approaches to assessing the causal relationship between treatments and outcomes: (1) inference from non-randomized (observational) studies, (2) analysis of randomized studies where patients received treatments other than those to which they were randomized and (3) analysis of studies where the outcome of interest is sometimes unobservable because of a competing event (competing risks). We conclude that for the practice-changing demonstration of a favorable benefit-to-risk ratio, the gold standard is the intent-to-treat analysis of RCTs. At the same time, we illustrate how careful application of special statistical methods for assessment of treatment–outcome causation can be instrumental in complementing existing randomized evidence and guiding design of future research. |
doi_str_mv | 10.1038/bmt.2011.119 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1014107540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A290293319</galeid><sourcerecordid>A290293319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c584t-a979ee63d60084e1da972d9dc6670e2f113292c1a46466e34cdd7e938ec8a8343</originalsourceid><addsrcrecordid>eNqN0s9rFDEUB_Agil2rN88yIIoHZ82vySS9LcVfUPCi5yGbebObMpOseRlK_3uz3dW2UkRyCITPS_KSLyEvGV0yKvSH9ZSXnDK2ZMw8IgsmW1U3QjWPyYJypWshlDkhzxAvKWVS0uYpOeFM8YbzZkHcChEQfdhUzs5oxyrBaLOPAbd-h9Ua8hVAqHICmycIGSsb-sqNPnhXdJyzixPgWWXHK3uNpdz2Vd5CNfgA1S75kJ-TJ4MdEV4c51Py49PH7-df6otvn7-ery5q12iZa2taA6BEryjVElhfFnhveqdUS4EPjAluuGNWKqkUCOn6vgUjNDhttZDilLw77LtL8ecMmLvJo4NxtAHijB0r_TPaNpL-D-WcGtbqQl__RS_jnEJppONKctZK1Yp_qbIXa1SreXurNnaEzoch5mTd_uhuxQ3lRghmilo-oMroYfIuBhh8Wb9X8PZOwRbsmLcYx_nmG-_D9wfoUkRMMHTlgyabrsslu32aupKmbp-mjt3wV8em5vUE_R_8Oz4FvDkCiyUNQ7LBebx1jday4fvXqQ8O94HYQLr7Og8c_As3aNzt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1011567827</pqid></control><display><type>article</type><title>Assessing causal relationships between treatments and clinical outcomes: always read the fine print</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Freidlin, B ; Korn, E L</creator><creatorcontrib>Freidlin, B ; Korn, E L</creatorcontrib><description>Changes in clinical practice should be driven by relevant and reliable evidence. Hence, adoption of a new therapy requires demonstrating that it provides (causes) benefit. Such evidence is generally obtained from intent-to-treat analyses of randomized clinical trials (RCTs). In this paper, we review other approaches to assessing the causal relationship between treatments and outcomes: (1) inference from non-randomized (observational) studies, (2) analysis of randomized studies where patients received treatments other than those to which they were randomized and (3) analysis of studies where the outcome of interest is sometimes unobservable because of a competing event (competing risks). We conclude that for the practice-changing demonstration of a favorable benefit-to-risk ratio, the gold standard is the intent-to-treat analysis of RCTs. At the same time, we illustrate how careful application of special statistical methods for assessment of treatment–outcome causation can be instrumental in complementing existing randomized evidence and guiding design of future research.</description><identifier>ISSN: 0268-3369</identifier><identifier>EISSN: 1476-5365</identifier><identifier>DOI: 10.1038/bmt.2011.119</identifier><identifier>PMID: 21625225</identifier><identifier>CODEN: BMTRE9</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Adoption ; Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy ; Biological and medical sciences ; Bone marrow ; Bone marrow transplantation ; Bone marrow, stem cells transplantation. Graft versus host reaction ; Cancer ; Care and treatment ; Cell Biology ; Clinical outcomes ; Clinical trials ; Hematology ; Humans ; Intention to Treat Analysis ; Internal Medicine ; Management ; Medical sciences ; Medicine ; Medicine & Public Health ; Observational studies ; Public Health ; Randomized Controlled Trials as Topic ; Research Design ; review ; Risk ; Statistical methods ; Statistics ; Stem cell transplantation ; Stem Cells ; Transfusions. Complications. Transfusion reactions. Cell and gene therapy ; Transplantation ; Treatment Outcome</subject><ispartof>Bone marrow transplantation (Basingstoke), 2012-05, Vol.47 (5), p.626-632</ispartof><rights>Macmillan Publishers Limited 2012</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2012 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group May 2012</rights><rights>Macmillan Publishers Limited 2012.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c584t-a979ee63d60084e1da972d9dc6670e2f113292c1a46466e34cdd7e938ec8a8343</citedby><cites>FETCH-LOGICAL-c584t-a979ee63d60084e1da972d9dc6670e2f113292c1a46466e34cdd7e938ec8a8343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/bmt.2011.119$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/bmt.2011.119$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25884523$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21625225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Freidlin, B</creatorcontrib><creatorcontrib>Korn, E L</creatorcontrib><title>Assessing causal relationships between treatments and clinical outcomes: always read the fine print</title><title>Bone marrow transplantation (Basingstoke)</title><addtitle>Bone Marrow Transplant</addtitle><addtitle>Bone Marrow Transplant</addtitle><description>Changes in clinical practice should be driven by relevant and reliable evidence. Hence, adoption of a new therapy requires demonstrating that it provides (causes) benefit. Such evidence is generally obtained from intent-to-treat analyses of randomized clinical trials (RCTs). In this paper, we review other approaches to assessing the causal relationship between treatments and outcomes: (1) inference from non-randomized (observational) studies, (2) analysis of randomized studies where patients received treatments other than those to which they were randomized and (3) analysis of studies where the outcome of interest is sometimes unobservable because of a competing event (competing risks). We conclude that for the practice-changing demonstration of a favorable benefit-to-risk ratio, the gold standard is the intent-to-treat analysis of RCTs. At the same time, we illustrate how careful application of special statistical methods for assessment of treatment–outcome causation can be instrumental in complementing existing randomized evidence and guiding design of future research.</description><subject>Adoption</subject><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</subject><subject>Biological and medical sciences</subject><subject>Bone marrow</subject><subject>Bone marrow transplantation</subject><subject>Bone marrow, stem cells transplantation. Graft versus host reaction</subject><subject>Cancer</subject><subject>Care and treatment</subject><subject>Cell Biology</subject><subject>Clinical outcomes</subject><subject>Clinical trials</subject><subject>Hematology</subject><subject>Humans</subject><subject>Intention to Treat Analysis</subject><subject>Internal Medicine</subject><subject>Management</subject><subject>Medical sciences</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Observational studies</subject><subject>Public Health</subject><subject>Randomized Controlled Trials as Topic</subject><subject>Research Design</subject><subject>review</subject><subject>Risk</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Stem cell transplantation</subject><subject>Stem Cells</subject><subject>Transfusions. Complications. Transfusion reactions. Cell and gene therapy</subject><subject>Transplantation</subject><subject>Treatment Outcome</subject><issn>0268-3369</issn><issn>1476-5365</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqN0s9rFDEUB_Agil2rN88yIIoHZ82vySS9LcVfUPCi5yGbebObMpOseRlK_3uz3dW2UkRyCITPS_KSLyEvGV0yKvSH9ZSXnDK2ZMw8IgsmW1U3QjWPyYJypWshlDkhzxAvKWVS0uYpOeFM8YbzZkHcChEQfdhUzs5oxyrBaLOPAbd-h9Ua8hVAqHICmycIGSsb-sqNPnhXdJyzixPgWWXHK3uNpdz2Vd5CNfgA1S75kJ-TJ4MdEV4c51Py49PH7-df6otvn7-ery5q12iZa2taA6BEryjVElhfFnhveqdUS4EPjAluuGNWKqkUCOn6vgUjNDhttZDilLw77LtL8ecMmLvJo4NxtAHijB0r_TPaNpL-D-WcGtbqQl__RS_jnEJppONKctZK1Yp_qbIXa1SreXurNnaEzoch5mTd_uhuxQ3lRghmilo-oMroYfIuBhh8Wb9X8PZOwRbsmLcYx_nmG-_D9wfoUkRMMHTlgyabrsslu32aupKmbp-mjt3wV8em5vUE_R_8Oz4FvDkCiyUNQ7LBebx1jday4fvXqQ8O94HYQLr7Og8c_As3aNzt</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Freidlin, B</creator><creator>Korn, E L</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7T5</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20120501</creationdate><title>Assessing causal relationships between treatments and clinical outcomes: always read the fine print</title><author>Freidlin, B ; Korn, E L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c584t-a979ee63d60084e1da972d9dc6670e2f113292c1a46466e34cdd7e938ec8a8343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adoption</topic><topic>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</topic><topic>Biological and medical sciences</topic><topic>Bone marrow</topic><topic>Bone marrow transplantation</topic><topic>Bone marrow, stem cells transplantation. Graft versus host reaction</topic><topic>Cancer</topic><topic>Care and treatment</topic><topic>Cell Biology</topic><topic>Clinical outcomes</topic><topic>Clinical trials</topic><topic>Hematology</topic><topic>Humans</topic><topic>Intention to Treat Analysis</topic><topic>Internal Medicine</topic><topic>Management</topic><topic>Medical sciences</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Observational studies</topic><topic>Public Health</topic><topic>Randomized Controlled Trials as Topic</topic><topic>Research Design</topic><topic>review</topic><topic>Risk</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Stem cell transplantation</topic><topic>Stem Cells</topic><topic>Transfusions. Complications. Transfusion reactions. Cell and gene therapy</topic><topic>Transplantation</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freidlin, B</creatorcontrib><creatorcontrib>Korn, E L</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Bone marrow transplantation (Basingstoke)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freidlin, B</au><au>Korn, E L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing causal relationships between treatments and clinical outcomes: always read the fine print</atitle><jtitle>Bone marrow transplantation (Basingstoke)</jtitle><stitle>Bone Marrow Transplant</stitle><addtitle>Bone Marrow Transplant</addtitle><date>2012-05-01</date><risdate>2012</risdate><volume>47</volume><issue>5</issue><spage>626</spage><epage>632</epage><pages>626-632</pages><issn>0268-3369</issn><eissn>1476-5365</eissn><coden>BMTRE9</coden><abstract>Changes in clinical practice should be driven by relevant and reliable evidence. Hence, adoption of a new therapy requires demonstrating that it provides (causes) benefit. Such evidence is generally obtained from intent-to-treat analyses of randomized clinical trials (RCTs). In this paper, we review other approaches to assessing the causal relationship between treatments and outcomes: (1) inference from non-randomized (observational) studies, (2) analysis of randomized studies where patients received treatments other than those to which they were randomized and (3) analysis of studies where the outcome of interest is sometimes unobservable because of a competing event (competing risks). We conclude that for the practice-changing demonstration of a favorable benefit-to-risk ratio, the gold standard is the intent-to-treat analysis of RCTs. At the same time, we illustrate how careful application of special statistical methods for assessment of treatment–outcome causation can be instrumental in complementing existing randomized evidence and guiding design of future research.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>21625225</pmid><doi>10.1038/bmt.2011.119</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3369 |
ispartof | Bone marrow transplantation (Basingstoke), 2012-05, Vol.47 (5), p.626-632 |
issn | 0268-3369 1476-5365 |
language | eng |
recordid | cdi_proquest_miscellaneous_1014107540 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online; EZB-FREE-00999 freely available EZB journals |
subjects | Adoption Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy Biological and medical sciences Bone marrow Bone marrow transplantation Bone marrow, stem cells transplantation. Graft versus host reaction Cancer Care and treatment Cell Biology Clinical outcomes Clinical trials Hematology Humans Intention to Treat Analysis Internal Medicine Management Medical sciences Medicine Medicine & Public Health Observational studies Public Health Randomized Controlled Trials as Topic Research Design review Risk Statistical methods Statistics Stem cell transplantation Stem Cells Transfusions. Complications. Transfusion reactions. Cell and gene therapy Transplantation Treatment Outcome |
title | Assessing causal relationships between treatments and clinical outcomes: always read the fine print |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20causal%20relationships%20between%20treatments%20and%20clinical%20outcomes:%20always%20read%20the%20fine%20print&rft.jtitle=Bone%20marrow%20transplantation%20(Basingstoke)&rft.au=Freidlin,%20B&rft.date=2012-05-01&rft.volume=47&rft.issue=5&rft.spage=626&rft.epage=632&rft.pages=626-632&rft.issn=0268-3369&rft.eissn=1476-5365&rft.coden=BMTRE9&rft_id=info:doi/10.1038/bmt.2011.119&rft_dat=%3Cgale_proqu%3EA290293319%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1011567827&rft_id=info:pmid/21625225&rft_galeid=A290293319&rfr_iscdi=true |