Automated Recognition of Obstructive Sleep Apnea Syndrome Using Support Vector Machine Classifier

Obstructive sleep apnea (OSA) is a common sleep disorder that causes pauses of breathing due to repetitive obstruction of the upper airways of the respiratory system. The effect of this phenomenon can be observed in other physiological signals like the heart rate variability, oxygen saturation, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2012-05, Vol.16 (3), p.463-468
Hauptverfasser: Al-Angari, H. M., Sahakian, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 468
container_issue 3
container_start_page 463
container_title IEEE journal of biomedical and health informatics
container_volume 16
creator Al-Angari, H. M.
Sahakian, A. V.
description Obstructive sleep apnea (OSA) is a common sleep disorder that causes pauses of breathing due to repetitive obstruction of the upper airways of the respiratory system. The effect of this phenomenon can be observed in other physiological signals like the heart rate variability, oxygen saturation, and the respiratory effort signals. In this study, features from these signals were extracted from 50 control and 50 OSA patients from the Sleep Heart Health Study database and implemented for minute and subject classifications. A support vector machine (SVM) classifier was used with linear and second-order polynomial kernels. For the minute classification, the respiratory features had the highest sensitivity while the oxygen saturation gave the highest specificity. The polynomial kernel always had better performance and the highest accuracy of 82.4% (Sen: 69.9%, Spec: 91.4%) was achieved using the combined-feature classifier. For subject classification, the polynomial kernel had a clear improvement in the oxygen saturation accuracy as the highest accuracy of 95% was achieved by both the oxygen saturation (Sen: 100%, Spec: 90.2%) and the combined-feature (Sen: 91.8%, Spec: 98.0%). Further analysis of the SVM with other kernel types might be useful for optimizing the classifier with the appropriate features for an OSA automated detection algorithm.
doi_str_mv 10.1109/TITB.2012.2185809
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1014102743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6138915</ieee_id><sourcerecordid>1014102743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-dd2d8f72fd314bda7728a34ed8c0ae5122e8a40624bd6fcbecca3025155706d33</originalsourceid><addsrcrecordid>eNqNkU9vEzEQxVcIREvhAyAkZIkLlw3-t2vnghQioJVaVSIpV8uxZ1NXu_Zieyv12-OQNIKeOM1I7zdPM_Oq6i3BM0Lw_NP6Yv1lRjGhM0pkI_H8WXVKmkbWGDP6vPRYzmshBDmpXqV0hzHhDWEvqxNKqRSUi9NKL6YcBp3Boh9gwta77IJHoUPXm5TjZLK7B7TqAUa0GD1otHrwNoYB0E1yfotW0ziGmNFPMDlEdKXNrfOAlr1OyXUO4uvqRaf7BG8O9ay6-fZ1vTyvL6-_XywXl7XhEufaWmplJ2hnGeEbq4WgUjMOVhqsoSGUgtQct7SIbWc2YIxmmDblXoFby9hZ9XnvO06bAawBn6Pu1RjdoOODCtqpfxXvbtU23CvOpWipLAYfDwYx_JogZTW4ZKDvtYcwJUXK-wimgrP_QUnDJCG8oB-eoHdhir584g-FKZd8R5E9ZWJIKUJ33Jtgtcta7bJWu6zVIesy8_7vg48Tj-EW4N0ecABwlFvC5Lxs9xtgea6K</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1011024844</pqid></control><display><type>article</type><title>Automated Recognition of Obstructive Sleep Apnea Syndrome Using Support Vector Machine Classifier</title><source>IEEE Electronic Library (IEL)</source><creator>Al-Angari, H. M. ; Sahakian, A. V.</creator><creatorcontrib>Al-Angari, H. M. ; Sahakian, A. V.</creatorcontrib><description>Obstructive sleep apnea (OSA) is a common sleep disorder that causes pauses of breathing due to repetitive obstruction of the upper airways of the respiratory system. The effect of this phenomenon can be observed in other physiological signals like the heart rate variability, oxygen saturation, and the respiratory effort signals. In this study, features from these signals were extracted from 50 control and 50 OSA patients from the Sleep Heart Health Study database and implemented for minute and subject classifications. A support vector machine (SVM) classifier was used with linear and second-order polynomial kernels. For the minute classification, the respiratory features had the highest sensitivity while the oxygen saturation gave the highest specificity. The polynomial kernel always had better performance and the highest accuracy of 82.4% (Sen: 69.9%, Spec: 91.4%) was achieved using the combined-feature classifier. For subject classification, the polynomial kernel had a clear improvement in the oxygen saturation accuracy as the highest accuracy of 95% was achieved by both the oxygen saturation (Sen: 100%, Spec: 90.2%) and the combined-feature (Sen: 91.8%, Spec: 98.0%). Further analysis of the SVM with other kernel types might be useful for optimizing the classifier with the appropriate features for an OSA automated detection algorithm.</description><identifier>ISSN: 1089-7771</identifier><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 1558-0032</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/TITB.2012.2185809</identifier><identifier>PMID: 22287247</identifier><identifier>CODEN: ITIBFX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Adolescent ; Adult ; Case-Control Studies ; Child ; Heart Rate - physiology ; Heart rate variability ; Humans ; Kernel ; Middle Aged ; obstructive sleep apnea (OSA) ; Oximetry ; Oxygen - blood ; oxygen saturation ; paradoxical breathing ; Pattern Recognition, Automated - methods ; Polynomials ; Polysomnography - methods ; respiratory efforts ; Respiratory Rate - physiology ; Respiratory system ; Sensitivity ; Sleep apnea ; Sleep Apnea, Obstructive - blood ; Sleep Apnea, Obstructive - physiopathology ; Sleep disorders ; Support Vector Machine ; Support vector machines ; support vector machines (SVM)</subject><ispartof>IEEE journal of biomedical and health informatics, 2012-05, Vol.16 (3), p.463-468</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2012</rights><rights>2012 IEEE 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-dd2d8f72fd314bda7728a34ed8c0ae5122e8a40624bd6fcbecca3025155706d33</citedby><cites>FETCH-LOGICAL-c480t-dd2d8f72fd314bda7728a34ed8c0ae5122e8a40624bd6fcbecca3025155706d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6138915$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,315,781,785,797,886,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6138915$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22287247$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Al-Angari, H. M.</creatorcontrib><creatorcontrib>Sahakian, A. V.</creatorcontrib><title>Automated Recognition of Obstructive Sleep Apnea Syndrome Using Support Vector Machine Classifier</title><title>IEEE journal of biomedical and health informatics</title><addtitle>TITB</addtitle><addtitle>IEEE Trans Inf Technol Biomed</addtitle><description>Obstructive sleep apnea (OSA) is a common sleep disorder that causes pauses of breathing due to repetitive obstruction of the upper airways of the respiratory system. The effect of this phenomenon can be observed in other physiological signals like the heart rate variability, oxygen saturation, and the respiratory effort signals. In this study, features from these signals were extracted from 50 control and 50 OSA patients from the Sleep Heart Health Study database and implemented for minute and subject classifications. A support vector machine (SVM) classifier was used with linear and second-order polynomial kernels. For the minute classification, the respiratory features had the highest sensitivity while the oxygen saturation gave the highest specificity. The polynomial kernel always had better performance and the highest accuracy of 82.4% (Sen: 69.9%, Spec: 91.4%) was achieved using the combined-feature classifier. For subject classification, the polynomial kernel had a clear improvement in the oxygen saturation accuracy as the highest accuracy of 95% was achieved by both the oxygen saturation (Sen: 100%, Spec: 90.2%) and the combined-feature (Sen: 91.8%, Spec: 98.0%). Further analysis of the SVM with other kernel types might be useful for optimizing the classifier with the appropriate features for an OSA automated detection algorithm.</description><subject>Accuracy</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Case-Control Studies</subject><subject>Child</subject><subject>Heart Rate - physiology</subject><subject>Heart rate variability</subject><subject>Humans</subject><subject>Kernel</subject><subject>Middle Aged</subject><subject>obstructive sleep apnea (OSA)</subject><subject>Oximetry</subject><subject>Oxygen - blood</subject><subject>oxygen saturation</subject><subject>paradoxical breathing</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Polynomials</subject><subject>Polysomnography - methods</subject><subject>respiratory efforts</subject><subject>Respiratory Rate - physiology</subject><subject>Respiratory system</subject><subject>Sensitivity</subject><subject>Sleep apnea</subject><subject>Sleep Apnea, Obstructive - blood</subject><subject>Sleep Apnea, Obstructive - physiopathology</subject><subject>Sleep disorders</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>support vector machines (SVM)</subject><issn>1089-7771</issn><issn>2168-2194</issn><issn>1558-0032</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU9vEzEQxVcIREvhAyAkZIkLlw3-t2vnghQioJVaVSIpV8uxZ1NXu_Zieyv12-OQNIKeOM1I7zdPM_Oq6i3BM0Lw_NP6Yv1lRjGhM0pkI_H8WXVKmkbWGDP6vPRYzmshBDmpXqV0hzHhDWEvqxNKqRSUi9NKL6YcBp3Boh9gwta77IJHoUPXm5TjZLK7B7TqAUa0GD1otHrwNoYB0E1yfotW0ziGmNFPMDlEdKXNrfOAlr1OyXUO4uvqRaf7BG8O9ay6-fZ1vTyvL6-_XywXl7XhEufaWmplJ2hnGeEbq4WgUjMOVhqsoSGUgtQct7SIbWc2YIxmmDblXoFby9hZ9XnvO06bAawBn6Pu1RjdoOODCtqpfxXvbtU23CvOpWipLAYfDwYx_JogZTW4ZKDvtYcwJUXK-wimgrP_QUnDJCG8oB-eoHdhir584g-FKZd8R5E9ZWJIKUJ33Jtgtcta7bJWu6zVIesy8_7vg48Tj-EW4N0ecABwlFvC5Lxs9xtgea6K</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Al-Angari, H. M.</creator><creator>Sahakian, A. V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120501</creationdate><title>Automated Recognition of Obstructive Sleep Apnea Syndrome Using Support Vector Machine Classifier</title><author>Al-Angari, H. M. ; Sahakian, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-dd2d8f72fd314bda7728a34ed8c0ae5122e8a40624bd6fcbecca3025155706d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Case-Control Studies</topic><topic>Child</topic><topic>Heart Rate - physiology</topic><topic>Heart rate variability</topic><topic>Humans</topic><topic>Kernel</topic><topic>Middle Aged</topic><topic>obstructive sleep apnea (OSA)</topic><topic>Oximetry</topic><topic>Oxygen - blood</topic><topic>oxygen saturation</topic><topic>paradoxical breathing</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Polynomials</topic><topic>Polysomnography - methods</topic><topic>respiratory efforts</topic><topic>Respiratory Rate - physiology</topic><topic>Respiratory system</topic><topic>Sensitivity</topic><topic>Sleep apnea</topic><topic>Sleep Apnea, Obstructive - blood</topic><topic>Sleep Apnea, Obstructive - physiopathology</topic><topic>Sleep disorders</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>support vector machines (SVM)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Angari, H. M.</creatorcontrib><creatorcontrib>Sahakian, A. V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Al-Angari, H. M.</au><au>Sahakian, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Recognition of Obstructive Sleep Apnea Syndrome Using Support Vector Machine Classifier</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>TITB</stitle><addtitle>IEEE Trans Inf Technol Biomed</addtitle><date>2012-05-01</date><risdate>2012</risdate><volume>16</volume><issue>3</issue><spage>463</spage><epage>468</epage><pages>463-468</pages><issn>1089-7771</issn><issn>2168-2194</issn><eissn>1558-0032</eissn><eissn>2168-2208</eissn><coden>ITIBFX</coden><abstract>Obstructive sleep apnea (OSA) is a common sleep disorder that causes pauses of breathing due to repetitive obstruction of the upper airways of the respiratory system. The effect of this phenomenon can be observed in other physiological signals like the heart rate variability, oxygen saturation, and the respiratory effort signals. In this study, features from these signals were extracted from 50 control and 50 OSA patients from the Sleep Heart Health Study database and implemented for minute and subject classifications. A support vector machine (SVM) classifier was used with linear and second-order polynomial kernels. For the minute classification, the respiratory features had the highest sensitivity while the oxygen saturation gave the highest specificity. The polynomial kernel always had better performance and the highest accuracy of 82.4% (Sen: 69.9%, Spec: 91.4%) was achieved using the combined-feature classifier. For subject classification, the polynomial kernel had a clear improvement in the oxygen saturation accuracy as the highest accuracy of 95% was achieved by both the oxygen saturation (Sen: 100%, Spec: 90.2%) and the combined-feature (Sen: 91.8%, Spec: 98.0%). Further analysis of the SVM with other kernel types might be useful for optimizing the classifier with the appropriate features for an OSA automated detection algorithm.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>22287247</pmid><doi>10.1109/TITB.2012.2185809</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7771
ispartof IEEE journal of biomedical and health informatics, 2012-05, Vol.16 (3), p.463-468
issn 1089-7771
2168-2194
1558-0032
2168-2208
language eng
recordid cdi_proquest_miscellaneous_1014102743
source IEEE Electronic Library (IEL)
subjects Accuracy
Adolescent
Adult
Case-Control Studies
Child
Heart Rate - physiology
Heart rate variability
Humans
Kernel
Middle Aged
obstructive sleep apnea (OSA)
Oximetry
Oxygen - blood
oxygen saturation
paradoxical breathing
Pattern Recognition, Automated - methods
Polynomials
Polysomnography - methods
respiratory efforts
Respiratory Rate - physiology
Respiratory system
Sensitivity
Sleep apnea
Sleep Apnea, Obstructive - blood
Sleep Apnea, Obstructive - physiopathology
Sleep disorders
Support Vector Machine
Support vector machines
support vector machines (SVM)
title Automated Recognition of Obstructive Sleep Apnea Syndrome Using Support Vector Machine Classifier
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T13%3A42%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Recognition%20of%20Obstructive%20Sleep%20Apnea%20Syndrome%20Using%20Support%20Vector%20Machine%20Classifier&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Al-Angari,%20H.%20M.&rft.date=2012-05-01&rft.volume=16&rft.issue=3&rft.spage=463&rft.epage=468&rft.pages=463-468&rft.issn=1089-7771&rft.eissn=1558-0032&rft.coden=ITIBFX&rft_id=info:doi/10.1109/TITB.2012.2185809&rft_dat=%3Cproquest_RIE%3E1014102743%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1011024844&rft_id=info:pmid/22287247&rft_ieee_id=6138915&rfr_iscdi=true