Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster

The peritrophic matrix (PM) forms a layer composed of chitin and glycoproteins that lines the insect intestinal lumen. This physical barrier plays a role analogous to that of mucous secretions of the vertebrate digestive tract and is thought to protect the midgut epithelium from abrasive food partic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2011-09, Vol.108 (38), p.15966-15971
Hauptverfasser: Kuraishi, Takayuki, Binggeli, Olivier, Opota, Onya, Buchon, Nicolas, Lemaitre, Bruno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15971
container_issue 38
container_start_page 15966
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Kuraishi, Takayuki
Binggeli, Olivier
Opota, Onya
Buchon, Nicolas
Lemaitre, Bruno
description The peritrophic matrix (PM) forms a layer composed of chitin and glycoproteins that lines the insect intestinal lumen. This physical barrier plays a role analogous to that of mucous secretions of the vertebrate digestive tract and is thought to protect the midgut epithelium from abrasive food particles and microbes. Almost nothing is known about PM functions in Drosophila, and its function as an immune barrier has never been addressed by a genetic approach. Here we show that the Drosocrystallin (Dcy) protein, a putative component of the eye lens of Drosophila, contributes to adult PM formation. A loss-of-function mutation in the dcy gene results in a reduction of PM width and an increase of its permeability. Upon bacterial ingestion a higher level of expression of antibacterial peptides was observed in dcy mutants, pointing to an influence of this matrix on bacteria sensing by the Imd immune pathway. Moreover, dcy-deficient flies show an increased susceptibility to oral infections with the entomopathogenic bacteria Pseudomonas entomophila and Serratia marcescens. Dcy mutant flies also succumb faster than wild type upon ingestion of a P. entomophila toxic extract. We show that this lethality is due in part to an increased deleterious action of Monalysin, a pore-forming toxin produced by P. entomophila. Collectively, our analysis of the dcy immune phenotype indicates that the PM plays an important role in Drosophila host defense against enteric pathogens, preventing the damaging action of pore-forming toxins on intestinal cells.
doi_str_mv 10.1073/pnas.1105994108
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1014102402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41352378</jstor_id><sourcerecordid>41352378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-fe7efb2bbebf829705aa3c97f39ec7a26d3b05a921db14fc4c54bc9d40872d333</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxSMEokvhzAmwOHFJ66_E8QUJlbYgVeIAPVuOM971KrGD7V3Blb8cR7tsgZMtz2_e-M2rqpcEXxAs2OXsdbogBDdScoK7R9WKYEnqlkv8uFphTEXdccrPqmcpbTHGsunw0-qMkk62gnar6tcteMjOINi7AbwBZENEGs0xZDDZ7QHFMAIKFuUNoBmiyzHMm9Ix6RzdD6TX2vmUkfMZUnZej6jXJhew3Jy3i0rw5YY-xpCW1lGjCUbtw1qnwj2vnlg9JnhxPM-r-5vrb1ef6rsvt5-vPtzVpqEs1xYE2J72PfS2o1LgRmtmpLBMghGatgPry5ukZOgJt4abhvdGDhx3gg6MsfPq_UF33vUTDAZ8jnpUc3STjj9V0E79W_Fuo9ZhrxgREje8CLw7CsTwfVfMqsklA2OxAmGXFMGkhEA5pgV9-x-6DbtYdpNUJxmnlLC2QJcHyJTFpAj29BeC1RKvWuJVD_GWjtd_Wzjxf_IsADoCS-eDXKdYp0gj22XqqwOyTTnEE8MJK2sWi8SbQ93qoPQ6uqTuv9JiDWNSZhSF3zLywoI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>893422136</pqid></control><display><type>article</type><title>Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kuraishi, Takayuki ; Binggeli, Olivier ; Opota, Onya ; Buchon, Nicolas ; Lemaitre, Bruno</creator><creatorcontrib>Kuraishi, Takayuki ; Binggeli, Olivier ; Opota, Onya ; Buchon, Nicolas ; Lemaitre, Bruno</creatorcontrib><description>The peritrophic matrix (PM) forms a layer composed of chitin and glycoproteins that lines the insect intestinal lumen. This physical barrier plays a role analogous to that of mucous secretions of the vertebrate digestive tract and is thought to protect the midgut epithelium from abrasive food particles and microbes. Almost nothing is known about PM functions in Drosophila, and its function as an immune barrier has never been addressed by a genetic approach. Here we show that the Drosocrystallin (Dcy) protein, a putative component of the eye lens of Drosophila, contributes to adult PM formation. A loss-of-function mutation in the dcy gene results in a reduction of PM width and an increase of its permeability. Upon bacterial ingestion a higher level of expression of antibacterial peptides was observed in dcy mutants, pointing to an influence of this matrix on bacteria sensing by the Imd immune pathway. Moreover, dcy-deficient flies show an increased susceptibility to oral infections with the entomopathogenic bacteria Pseudomonas entomophila and Serratia marcescens. Dcy mutant flies also succumb faster than wild type upon ingestion of a P. entomophila toxic extract. We show that this lethality is due in part to an increased deleterious action of Monalysin, a pore-forming toxin produced by P. entomophila. Collectively, our analysis of the dcy immune phenotype indicates that the PM plays an important role in Drosophila host defense against enteric pathogens, preventing the damaging action of pore-forming toxins on intestinal cells.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1105994108</identifier><identifier>PMID: 21896728</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>adults ; Animals ; antibacterial proteins ; Bacteria ; Bacteria - immunology ; Bacteria - metabolism ; Bacterial infections ; Bacterial Toxins - immunology ; Bacterial Toxins - metabolism ; Biological Sciences ; Chitin ; Digestive tract ; Drosophila ; Drosophila melanogaster ; Drosophila melanogaster - genetics ; Drosophila melanogaster - immunology ; Drosophila melanogaster - microbiology ; Drosophila Proteins - genetics ; Drosophila Proteins - immunology ; Drosophila Proteins - metabolism ; entomopathogenic bacteria ; Epithelium ; Eye lens ; Eye Proteins - genetics ; Eye Proteins - immunology ; Eye Proteins - metabolism ; Food ; Gene expression ; Gene Expression Regulation ; genes ; Genetic mutation ; Glycoproteins ; Host-Pathogen Interactions - immunology ; Infections ; Infestation ; ingestion ; Insects ; Intestinal Mucosa - immunology ; Intestinal Mucosa - metabolism ; Intestinal Mucosa - microbiology ; Intestine ; intestines ; Intestines - immunology ; Intestines - microbiology ; Lethality ; Microscopy, Electron, Transmission ; Midgut ; mutants ; Mutation ; Oral infection ; Pathogens ; Pectobacterium carotovorum - immunology ; Pectobacterium carotovorum - physiology ; Peritrophic membrane ; Permeability ; phenotype ; Proteins ; Pseudomonas ; Pseudomonas - immunology ; Pseudomonas - physiology ; Reverse Transcriptase Polymerase Chain Reaction ; Secretions ; Serratia marcescens ; Serratia marcescens - immunology ; Serratia marcescens - metabolism ; Serratia marcescens - physiology ; Signal Transduction - immunology ; Survival Analysis ; toxicity ; Toxins ; vertebrates</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-09, Vol.108 (38), p.15966-15971</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Sep 20, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-fe7efb2bbebf829705aa3c97f39ec7a26d3b05a921db14fc4c54bc9d40872d333</citedby><cites>FETCH-LOGICAL-c523t-fe7efb2bbebf829705aa3c97f39ec7a26d3b05a921db14fc4c54bc9d40872d333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/38.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41352378$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41352378$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21896728$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuraishi, Takayuki</creatorcontrib><creatorcontrib>Binggeli, Olivier</creatorcontrib><creatorcontrib>Opota, Onya</creatorcontrib><creatorcontrib>Buchon, Nicolas</creatorcontrib><creatorcontrib>Lemaitre, Bruno</creatorcontrib><title>Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The peritrophic matrix (PM) forms a layer composed of chitin and glycoproteins that lines the insect intestinal lumen. This physical barrier plays a role analogous to that of mucous secretions of the vertebrate digestive tract and is thought to protect the midgut epithelium from abrasive food particles and microbes. Almost nothing is known about PM functions in Drosophila, and its function as an immune barrier has never been addressed by a genetic approach. Here we show that the Drosocrystallin (Dcy) protein, a putative component of the eye lens of Drosophila, contributes to adult PM formation. A loss-of-function mutation in the dcy gene results in a reduction of PM width and an increase of its permeability. Upon bacterial ingestion a higher level of expression of antibacterial peptides was observed in dcy mutants, pointing to an influence of this matrix on bacteria sensing by the Imd immune pathway. Moreover, dcy-deficient flies show an increased susceptibility to oral infections with the entomopathogenic bacteria Pseudomonas entomophila and Serratia marcescens. Dcy mutant flies also succumb faster than wild type upon ingestion of a P. entomophila toxic extract. We show that this lethality is due in part to an increased deleterious action of Monalysin, a pore-forming toxin produced by P. entomophila. Collectively, our analysis of the dcy immune phenotype indicates that the PM plays an important role in Drosophila host defense against enteric pathogens, preventing the damaging action of pore-forming toxins on intestinal cells.</description><subject>adults</subject><subject>Animals</subject><subject>antibacterial proteins</subject><subject>Bacteria</subject><subject>Bacteria - immunology</subject><subject>Bacteria - metabolism</subject><subject>Bacterial infections</subject><subject>Bacterial Toxins - immunology</subject><subject>Bacterial Toxins - metabolism</subject><subject>Biological Sciences</subject><subject>Chitin</subject><subject>Digestive tract</subject><subject>Drosophila</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - immunology</subject><subject>Drosophila melanogaster - microbiology</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - immunology</subject><subject>Drosophila Proteins - metabolism</subject><subject>entomopathogenic bacteria</subject><subject>Epithelium</subject><subject>Eye lens</subject><subject>Eye Proteins - genetics</subject><subject>Eye Proteins - immunology</subject><subject>Eye Proteins - metabolism</subject><subject>Food</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>genes</subject><subject>Genetic mutation</subject><subject>Glycoproteins</subject><subject>Host-Pathogen Interactions - immunology</subject><subject>Infections</subject><subject>Infestation</subject><subject>ingestion</subject><subject>Insects</subject><subject>Intestinal Mucosa - immunology</subject><subject>Intestinal Mucosa - metabolism</subject><subject>Intestinal Mucosa - microbiology</subject><subject>Intestine</subject><subject>intestines</subject><subject>Intestines - immunology</subject><subject>Intestines - microbiology</subject><subject>Lethality</subject><subject>Microscopy, Electron, Transmission</subject><subject>Midgut</subject><subject>mutants</subject><subject>Mutation</subject><subject>Oral infection</subject><subject>Pathogens</subject><subject>Pectobacterium carotovorum - immunology</subject><subject>Pectobacterium carotovorum - physiology</subject><subject>Peritrophic membrane</subject><subject>Permeability</subject><subject>phenotype</subject><subject>Proteins</subject><subject>Pseudomonas</subject><subject>Pseudomonas - immunology</subject><subject>Pseudomonas - physiology</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Secretions</subject><subject>Serratia marcescens</subject><subject>Serratia marcescens - immunology</subject><subject>Serratia marcescens - metabolism</subject><subject>Serratia marcescens - physiology</subject><subject>Signal Transduction - immunology</subject><subject>Survival Analysis</subject><subject>toxicity</subject><subject>Toxins</subject><subject>vertebrates</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxSMEokvhzAmwOHFJ66_E8QUJlbYgVeIAPVuOM971KrGD7V3Blb8cR7tsgZMtz2_e-M2rqpcEXxAs2OXsdbogBDdScoK7R9WKYEnqlkv8uFphTEXdccrPqmcpbTHGsunw0-qMkk62gnar6tcteMjOINi7AbwBZENEGs0xZDDZ7QHFMAIKFuUNoBmiyzHMm9Ix6RzdD6TX2vmUkfMZUnZej6jXJhew3Jy3i0rw5YY-xpCW1lGjCUbtw1qnwj2vnlg9JnhxPM-r-5vrb1ef6rsvt5-vPtzVpqEs1xYE2J72PfS2o1LgRmtmpLBMghGatgPry5ukZOgJt4abhvdGDhx3gg6MsfPq_UF33vUTDAZ8jnpUc3STjj9V0E79W_Fuo9ZhrxgREje8CLw7CsTwfVfMqsklA2OxAmGXFMGkhEA5pgV9-x-6DbtYdpNUJxmnlLC2QJcHyJTFpAj29BeC1RKvWuJVD_GWjtd_Wzjxf_IsADoCS-eDXKdYp0gj22XqqwOyTTnEE8MJK2sWi8SbQ93qoPQ6uqTuv9JiDWNSZhSF3zLywoI</recordid><startdate>20110920</startdate><enddate>20110920</enddate><creator>Kuraishi, Takayuki</creator><creator>Binggeli, Olivier</creator><creator>Opota, Onya</creator><creator>Buchon, Nicolas</creator><creator>Lemaitre, Bruno</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7T7</scope><scope>5PM</scope></search><sort><creationdate>20110920</creationdate><title>Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster</title><author>Kuraishi, Takayuki ; Binggeli, Olivier ; Opota, Onya ; Buchon, Nicolas ; Lemaitre, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-fe7efb2bbebf829705aa3c97f39ec7a26d3b05a921db14fc4c54bc9d40872d333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>adults</topic><topic>Animals</topic><topic>antibacterial proteins</topic><topic>Bacteria</topic><topic>Bacteria - immunology</topic><topic>Bacteria - metabolism</topic><topic>Bacterial infections</topic><topic>Bacterial Toxins - immunology</topic><topic>Bacterial Toxins - metabolism</topic><topic>Biological Sciences</topic><topic>Chitin</topic><topic>Digestive tract</topic><topic>Drosophila</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - immunology</topic><topic>Drosophila melanogaster - microbiology</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - immunology</topic><topic>Drosophila Proteins - metabolism</topic><topic>entomopathogenic bacteria</topic><topic>Epithelium</topic><topic>Eye lens</topic><topic>Eye Proteins - genetics</topic><topic>Eye Proteins - immunology</topic><topic>Eye Proteins - metabolism</topic><topic>Food</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>genes</topic><topic>Genetic mutation</topic><topic>Glycoproteins</topic><topic>Host-Pathogen Interactions - immunology</topic><topic>Infections</topic><topic>Infestation</topic><topic>ingestion</topic><topic>Insects</topic><topic>Intestinal Mucosa - immunology</topic><topic>Intestinal Mucosa - metabolism</topic><topic>Intestinal Mucosa - microbiology</topic><topic>Intestine</topic><topic>intestines</topic><topic>Intestines - immunology</topic><topic>Intestines - microbiology</topic><topic>Lethality</topic><topic>Microscopy, Electron, Transmission</topic><topic>Midgut</topic><topic>mutants</topic><topic>Mutation</topic><topic>Oral infection</topic><topic>Pathogens</topic><topic>Pectobacterium carotovorum - immunology</topic><topic>Pectobacterium carotovorum - physiology</topic><topic>Peritrophic membrane</topic><topic>Permeability</topic><topic>phenotype</topic><topic>Proteins</topic><topic>Pseudomonas</topic><topic>Pseudomonas - immunology</topic><topic>Pseudomonas - physiology</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Secretions</topic><topic>Serratia marcescens</topic><topic>Serratia marcescens - immunology</topic><topic>Serratia marcescens - metabolism</topic><topic>Serratia marcescens - physiology</topic><topic>Signal Transduction - immunology</topic><topic>Survival Analysis</topic><topic>toxicity</topic><topic>Toxins</topic><topic>vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuraishi, Takayuki</creatorcontrib><creatorcontrib>Binggeli, Olivier</creatorcontrib><creatorcontrib>Opota, Onya</creatorcontrib><creatorcontrib>Buchon, Nicolas</creatorcontrib><creatorcontrib>Lemaitre, Bruno</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuraishi, Takayuki</au><au>Binggeli, Olivier</au><au>Opota, Onya</au><au>Buchon, Nicolas</au><au>Lemaitre, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-09-20</date><risdate>2011</risdate><volume>108</volume><issue>38</issue><spage>15966</spage><epage>15971</epage><pages>15966-15971</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The peritrophic matrix (PM) forms a layer composed of chitin and glycoproteins that lines the insect intestinal lumen. This physical barrier plays a role analogous to that of mucous secretions of the vertebrate digestive tract and is thought to protect the midgut epithelium from abrasive food particles and microbes. Almost nothing is known about PM functions in Drosophila, and its function as an immune barrier has never been addressed by a genetic approach. Here we show that the Drosocrystallin (Dcy) protein, a putative component of the eye lens of Drosophila, contributes to adult PM formation. A loss-of-function mutation in the dcy gene results in a reduction of PM width and an increase of its permeability. Upon bacterial ingestion a higher level of expression of antibacterial peptides was observed in dcy mutants, pointing to an influence of this matrix on bacteria sensing by the Imd immune pathway. Moreover, dcy-deficient flies show an increased susceptibility to oral infections with the entomopathogenic bacteria Pseudomonas entomophila and Serratia marcescens. Dcy mutant flies also succumb faster than wild type upon ingestion of a P. entomophila toxic extract. We show that this lethality is due in part to an increased deleterious action of Monalysin, a pore-forming toxin produced by P. entomophila. Collectively, our analysis of the dcy immune phenotype indicates that the PM plays an important role in Drosophila host defense against enteric pathogens, preventing the damaging action of pore-forming toxins on intestinal cells.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21896728</pmid><doi>10.1073/pnas.1105994108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-09, Vol.108 (38), p.15966-15971
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_1014102402
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects adults
Animals
antibacterial proteins
Bacteria
Bacteria - immunology
Bacteria - metabolism
Bacterial infections
Bacterial Toxins - immunology
Bacterial Toxins - metabolism
Biological Sciences
Chitin
Digestive tract
Drosophila
Drosophila melanogaster
Drosophila melanogaster - genetics
Drosophila melanogaster - immunology
Drosophila melanogaster - microbiology
Drosophila Proteins - genetics
Drosophila Proteins - immunology
Drosophila Proteins - metabolism
entomopathogenic bacteria
Epithelium
Eye lens
Eye Proteins - genetics
Eye Proteins - immunology
Eye Proteins - metabolism
Food
Gene expression
Gene Expression Regulation
genes
Genetic mutation
Glycoproteins
Host-Pathogen Interactions - immunology
Infections
Infestation
ingestion
Insects
Intestinal Mucosa - immunology
Intestinal Mucosa - metabolism
Intestinal Mucosa - microbiology
Intestine
intestines
Intestines - immunology
Intestines - microbiology
Lethality
Microscopy, Electron, Transmission
Midgut
mutants
Mutation
Oral infection
Pathogens
Pectobacterium carotovorum - immunology
Pectobacterium carotovorum - physiology
Peritrophic membrane
Permeability
phenotype
Proteins
Pseudomonas
Pseudomonas - immunology
Pseudomonas - physiology
Reverse Transcriptase Polymerase Chain Reaction
Secretions
Serratia marcescens
Serratia marcescens - immunology
Serratia marcescens - metabolism
Serratia marcescens - physiology
Signal Transduction - immunology
Survival Analysis
toxicity
Toxins
vertebrates
title Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A11%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20evidence%20for%20a%20protective%20role%20of%20the%20peritrophic%20matrix%20against%20intestinal%20bacterial%20infection%20in%20Drosophila%20melanogaster&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kuraishi,%20Takayuki&rft.date=2011-09-20&rft.volume=108&rft.issue=38&rft.spage=15966&rft.epage=15971&rft.pages=15966-15971&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1105994108&rft_dat=%3Cjstor_proqu%3E41352378%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=893422136&rft_id=info:pmid/21896728&rft_jstor_id=41352378&rfr_iscdi=true