Effect of flow velocity, substrate concentration and hydraulic cleaning on biofouling of reverse osmosis feed channels

A two-dimensional mathematical model coupling fluid dynamics, salt and substrate transport and biofilm development in time was used to investigate the effects of cross-flow velocity and substrate availability on biofouling in reverse osmosis (RO)/nanofiltration (NF) feed channels. Simulations perfor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2012-04, Vol.188, p.30-39
Hauptverfasser: Radu, A.I, Vrouwenvelder, J.S, van Loosdrecht, M.C.M, Picioreanu, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39
container_issue
container_start_page 30
container_title Chemical engineering journal (Lausanne, Switzerland : 1996)
container_volume 188
creator Radu, A.I
Vrouwenvelder, J.S
van Loosdrecht, M.C.M
Picioreanu, C
description A two-dimensional mathematical model coupling fluid dynamics, salt and substrate transport and biofilm development in time was used to investigate the effects of cross-flow velocity and substrate availability on biofouling in reverse osmosis (RO)/nanofiltration (NF) feed channels. Simulations performed in channels with or without spacer filaments describe how higher liquid velocities lead to less overall biomass amount in the channel by increasing the shear stress. In all studied cases at constant feed flow rate, biomass accumulation in the channel reached a steady state. Replicate simulation runs prove that the stochastic biomass attachment model does not affect the stationary biomass level achieved and has only a slight influence on the dynamics of biomass accumulation. Biofilm removal strategies based on velocity variations are evaluated. Numerical results indicate that sudden velocity increase could lead to biomass sloughing, followed however by biomass re-growth when returning to initial operating conditions. Simulations show particularities of substrate availability in membrane devices used for water treatment, e.g., the accumulation of rejected substrates at the membrane surface due to concentration polarization. Interestingly, with an increased biofilm thickness, the overall substrate consumption rate dominates over accumulation due to substrate concentration polarization, eventually leading to decreased substrate concentrations in the biofilm compared to bulk liquid.
doi_str_mv 10.1016/j.cej.2012.01.133
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1011213821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1011213821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-91918b8a1d9e662aa8a987aef0df9a23134f2df67beab0e8c87dac987b983ae63</originalsourceid><addsrcrecordid>eNo9kE1vGyEQhlHVSE3d_ICeyqVSD90tAzbLHqso_ZAi9dDkjGbZIcHCkMLakf99sBz1gGYYnnmFHsY-guhBgP627R1teylA9gJ6UOoNuwQzqE5JkG9br8ymM-N6eMfe17oVQugRxkt2uPGe3MKz5z7mZ36gmF1Yjl953U91KbgQdzk5Sqc-5MQxzfzxOBfcx-C4i4QppAfeXqaQfW7T083zQgcqlXiuu1xD5Z5o5u4RU6JYP7ALj7HS1WtdsfsfN3fXv7rbPz9_X3-_7ZxScunaF8FMBmEeSWuJaHA0A5IXsx9RKlBrL2evh4lwEmScGWZ0DZlGo5C0WrEv59ynkv_tqS52F6qjGDFR3lfb3IFsbtpZMTijruRaC3n7VMIOy7FBJ07brW2O7cmxFWCb47bz-TUeq8PoCyYX6v9FuTGg1do07tOZ85gtPpTG3P9tQRshQGyE0eoFGBmJNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1011213821</pqid></control><display><type>article</type><title>Effect of flow velocity, substrate concentration and hydraulic cleaning on biofouling of reverse osmosis feed channels</title><source>Elsevier ScienceDirect Journals</source><creator>Radu, A.I ; Vrouwenvelder, J.S ; van Loosdrecht, M.C.M ; Picioreanu, C</creator><creatorcontrib>Radu, A.I ; Vrouwenvelder, J.S ; van Loosdrecht, M.C.M ; Picioreanu, C</creatorcontrib><description>A two-dimensional mathematical model coupling fluid dynamics, salt and substrate transport and biofilm development in time was used to investigate the effects of cross-flow velocity and substrate availability on biofouling in reverse osmosis (RO)/nanofiltration (NF) feed channels. Simulations performed in channels with or without spacer filaments describe how higher liquid velocities lead to less overall biomass amount in the channel by increasing the shear stress. In all studied cases at constant feed flow rate, biomass accumulation in the channel reached a steady state. Replicate simulation runs prove that the stochastic biomass attachment model does not affect the stationary biomass level achieved and has only a slight influence on the dynamics of biomass accumulation. Biofilm removal strategies based on velocity variations are evaluated. Numerical results indicate that sudden velocity increase could lead to biomass sloughing, followed however by biomass re-growth when returning to initial operating conditions. Simulations show particularities of substrate availability in membrane devices used for water treatment, e.g., the accumulation of rejected substrates at the membrane surface due to concentration polarization. Interestingly, with an increased biofilm thickness, the overall substrate consumption rate dominates over accumulation due to substrate concentration polarization, eventually leading to decreased substrate concentrations in the biofilm compared to bulk liquid.</description><identifier>ISSN: 1385-8947</identifier><identifier>EISSN: 1873-3212</identifier><identifier>DOI: 10.1016/j.cej.2012.01.133</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Applied sciences ; biofilm ; biofouling ; biomass production ; Chemical engineering ; cleaning ; Exact sciences and technology ; fluid mechanics ; Hydrodynamics of contact apparatus ; mathematical models ; Membrane separation (reverse osmosis, dialysis...) ; reverse osmosis ; shear stress ; water treatment</subject><ispartof>Chemical engineering journal (Lausanne, Switzerland : 1996), 2012-04, Vol.188, p.30-39</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-91918b8a1d9e662aa8a987aef0df9a23134f2df67beab0e8c87dac987b983ae63</citedby><cites>FETCH-LOGICAL-c332t-91918b8a1d9e662aa8a987aef0df9a23134f2df67beab0e8c87dac987b983ae63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25816348$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Radu, A.I</creatorcontrib><creatorcontrib>Vrouwenvelder, J.S</creatorcontrib><creatorcontrib>van Loosdrecht, M.C.M</creatorcontrib><creatorcontrib>Picioreanu, C</creatorcontrib><title>Effect of flow velocity, substrate concentration and hydraulic cleaning on biofouling of reverse osmosis feed channels</title><title>Chemical engineering journal (Lausanne, Switzerland : 1996)</title><description>A two-dimensional mathematical model coupling fluid dynamics, salt and substrate transport and biofilm development in time was used to investigate the effects of cross-flow velocity and substrate availability on biofouling in reverse osmosis (RO)/nanofiltration (NF) feed channels. Simulations performed in channels with or without spacer filaments describe how higher liquid velocities lead to less overall biomass amount in the channel by increasing the shear stress. In all studied cases at constant feed flow rate, biomass accumulation in the channel reached a steady state. Replicate simulation runs prove that the stochastic biomass attachment model does not affect the stationary biomass level achieved and has only a slight influence on the dynamics of biomass accumulation. Biofilm removal strategies based on velocity variations are evaluated. Numerical results indicate that sudden velocity increase could lead to biomass sloughing, followed however by biomass re-growth when returning to initial operating conditions. Simulations show particularities of substrate availability in membrane devices used for water treatment, e.g., the accumulation of rejected substrates at the membrane surface due to concentration polarization. Interestingly, with an increased biofilm thickness, the overall substrate consumption rate dominates over accumulation due to substrate concentration polarization, eventually leading to decreased substrate concentrations in the biofilm compared to bulk liquid.</description><subject>Applied sciences</subject><subject>biofilm</subject><subject>biofouling</subject><subject>biomass production</subject><subject>Chemical engineering</subject><subject>cleaning</subject><subject>Exact sciences and technology</subject><subject>fluid mechanics</subject><subject>Hydrodynamics of contact apparatus</subject><subject>mathematical models</subject><subject>Membrane separation (reverse osmosis, dialysis...)</subject><subject>reverse osmosis</subject><subject>shear stress</subject><subject>water treatment</subject><issn>1385-8947</issn><issn>1873-3212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kE1vGyEQhlHVSE3d_ICeyqVSD90tAzbLHqso_ZAi9dDkjGbZIcHCkMLakf99sBz1gGYYnnmFHsY-guhBgP627R1teylA9gJ6UOoNuwQzqE5JkG9br8ymM-N6eMfe17oVQugRxkt2uPGe3MKz5z7mZ36gmF1Yjl953U91KbgQdzk5Sqc-5MQxzfzxOBfcx-C4i4QppAfeXqaQfW7T083zQgcqlXiuu1xD5Z5o5u4RU6JYP7ALj7HS1WtdsfsfN3fXv7rbPz9_X3-_7ZxScunaF8FMBmEeSWuJaHA0A5IXsx9RKlBrL2evh4lwEmScGWZ0DZlGo5C0WrEv59ynkv_tqS52F6qjGDFR3lfb3IFsbtpZMTijruRaC3n7VMIOy7FBJ07brW2O7cmxFWCb47bz-TUeq8PoCyYX6v9FuTGg1do07tOZ85gtPpTG3P9tQRshQGyE0eoFGBmJNw</recordid><startdate>20120415</startdate><enddate>20120415</enddate><creator>Radu, A.I</creator><creator>Vrouwenvelder, J.S</creator><creator>van Loosdrecht, M.C.M</creator><creator>Picioreanu, C</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20120415</creationdate><title>Effect of flow velocity, substrate concentration and hydraulic cleaning on biofouling of reverse osmosis feed channels</title><author>Radu, A.I ; Vrouwenvelder, J.S ; van Loosdrecht, M.C.M ; Picioreanu, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-91918b8a1d9e662aa8a987aef0df9a23134f2df67beab0e8c87dac987b983ae63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>biofilm</topic><topic>biofouling</topic><topic>biomass production</topic><topic>Chemical engineering</topic><topic>cleaning</topic><topic>Exact sciences and technology</topic><topic>fluid mechanics</topic><topic>Hydrodynamics of contact apparatus</topic><topic>mathematical models</topic><topic>Membrane separation (reverse osmosis, dialysis...)</topic><topic>reverse osmosis</topic><topic>shear stress</topic><topic>water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radu, A.I</creatorcontrib><creatorcontrib>Vrouwenvelder, J.S</creatorcontrib><creatorcontrib>van Loosdrecht, M.C.M</creatorcontrib><creatorcontrib>Picioreanu, C</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radu, A.I</au><au>Vrouwenvelder, J.S</au><au>van Loosdrecht, M.C.M</au><au>Picioreanu, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of flow velocity, substrate concentration and hydraulic cleaning on biofouling of reverse osmosis feed channels</atitle><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle><date>2012-04-15</date><risdate>2012</risdate><volume>188</volume><spage>30</spage><epage>39</epage><pages>30-39</pages><issn>1385-8947</issn><eissn>1873-3212</eissn><abstract>A two-dimensional mathematical model coupling fluid dynamics, salt and substrate transport and biofilm development in time was used to investigate the effects of cross-flow velocity and substrate availability on biofouling in reverse osmosis (RO)/nanofiltration (NF) feed channels. Simulations performed in channels with or without spacer filaments describe how higher liquid velocities lead to less overall biomass amount in the channel by increasing the shear stress. In all studied cases at constant feed flow rate, biomass accumulation in the channel reached a steady state. Replicate simulation runs prove that the stochastic biomass attachment model does not affect the stationary biomass level achieved and has only a slight influence on the dynamics of biomass accumulation. Biofilm removal strategies based on velocity variations are evaluated. Numerical results indicate that sudden velocity increase could lead to biomass sloughing, followed however by biomass re-growth when returning to initial operating conditions. Simulations show particularities of substrate availability in membrane devices used for water treatment, e.g., the accumulation of rejected substrates at the membrane surface due to concentration polarization. Interestingly, with an increased biofilm thickness, the overall substrate consumption rate dominates over accumulation due to substrate concentration polarization, eventually leading to decreased substrate concentrations in the biofilm compared to bulk liquid.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cej.2012.01.133</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1385-8947
ispartof Chemical engineering journal (Lausanne, Switzerland : 1996), 2012-04, Vol.188, p.30-39
issn 1385-8947
1873-3212
language eng
recordid cdi_proquest_miscellaneous_1011213821
source Elsevier ScienceDirect Journals
subjects Applied sciences
biofilm
biofouling
biomass production
Chemical engineering
cleaning
Exact sciences and technology
fluid mechanics
Hydrodynamics of contact apparatus
mathematical models
Membrane separation (reverse osmosis, dialysis...)
reverse osmosis
shear stress
water treatment
title Effect of flow velocity, substrate concentration and hydraulic cleaning on biofouling of reverse osmosis feed channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A04%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20flow%20velocity,%20substrate%20concentration%20and%20hydraulic%20cleaning%20on%20biofouling%20of%20reverse%20osmosis%20feed%20channels&rft.jtitle=Chemical%20engineering%20journal%20(Lausanne,%20Switzerland%20:%201996)&rft.au=Radu,%20A.I&rft.date=2012-04-15&rft.volume=188&rft.spage=30&rft.epage=39&rft.pages=30-39&rft.issn=1385-8947&rft.eissn=1873-3212&rft_id=info:doi/10.1016/j.cej.2012.01.133&rft_dat=%3Cproquest_cross%3E1011213821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1011213821&rft_id=info:pmid/&rfr_iscdi=true